Objectives: This study aimed to identify and study most properties of the specific and general health-related
quality-of-life (HRQoL) in prostate cancer patients, as well as creating a new measurement scale for assessing QoL
among prostate cancer patients.
Methodology: A cross sectional (descriptive) study was conducted to evaluate General Quality of life in patients
with prostate cancer. A sample of 100 prostate cancer patients from Al-Amal National hospital for cancer
management and Oncology Center in Baghdad Medical City. This study applied format of General World Health
Organization Quality of Life-BERF questionnaire. The methods used descriptive statistics to evaluate the General
QoL-Improvements, as well as inferential statistical methods were used such that (Wilcoxon Signed Rank,
McNemar).
Results: Patients with prostate cancer have different assessment concerning general QoL, and have instability of
their daily life cycle, within a moderate level. Regarding Specific QoL, overall result showed moderate assessment
of quality of life,nbut some domains showed worse assessment than others specially (sexual confidence, sexual
intimacy and prostate specific antigen (PSA) concern domains). Other domains accounted moderate responses and
those were (urinary control, masculine and self-esteem, heath worry, cancer control, informed decision and outlook),
while (marital affection, sexual intimacy and regret) accounted high responding, therefore, prostate cancer patients
have instability of their daily life cycle, within a moderate level. A new measurement scale was created using factor
analysis technique on WHO HRQoL BREF and specific HRQoL of prostate cancer patients
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreIn this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find the solutions of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are dis
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreIn this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919 for a previous study. The comparison between the numerical and numerical simulation res
... Show MoreLet R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .
تهدف هذه الدراسة للتعرف على السياسات اإلاسرائيلية المتبعة على الارض والمتمثلة في االاستيطان
الاستعماري والطرق التفافية، ومصادرة الاراضي وجدار الضم والتوسع العنصري، بالاضافة إلى التصنيف
الاداري للمناطق في الضفة الغربية حسب ما جاء في اتفاقية أوسلو، والتي من شأنها التأثير على تلك
المناطق، وال سيما قطاع اإلسكان الذي يعد من أهم القطاعات التي تتر كب وبالتحديد في منطقة الدراسة،
وسوف تحاول هذه الدراسة تس