Objective: The study aimed to screen the prepubertal children for idiopathic scoliosis at earlier stages, and find
out the relationship between idiopathic scoliosis and demographic data such as age, sex, body mass index,
heavy backpacks, and heart & lung diseases.
Methodology: A descriptive study was conducted on screening program for prepubertal children in primary
schools at Baghdad city, starting from 24th of February to the end of October 2010. Non- probability
(purposive) sample of 510 prepubertal children were chosen from primary schools of both sides of Al-Karkh
and Al-Russafa sectors. Data was collected through a specially constructed questionnaire format include (24)
items multiple choice questions, and researcher observation. The validity of the questionnaire was determined
through a panel of experts related to the field of the study, and the reliability through a pilot study. The data
were analyzed through the application of descriptive statistical analysis frequency, & percentages, and
inferential statistical analysis, chi-square, are used.
Results: The study results revealed that most of the prepubertal children have idiopathic scoliosis, two third of
the sample (88.4%) were at age 10-12 years and mostly boys. There is highly significant association with (low
Body Mass Index & carry of the school backpack) but no significant association with the age, gender, and lung
& heart diseases. There is highly significant association between prepubertal children's idiopathic scoliosis signs
& the researcher observation for the prepubertal body feature, and Adam's Bending Forward Test which
revealed highly significant association with their idiopathic scoliosis. The results of the study reflect that the
majority of prepubertal children's idiopathic scoliosis deformities have significant association at early detection
than the other spinal deformities (kyphosis & kyphoscoliosis).
Recommendation: The researchers recommended that Ministry Of Health should activate the screening program
of scoliosis within school health service programs, and Ministry of Education should be involved their teachers in
the screening & training program.
Tested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
This paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important
Self-repairing technology based on micro-capsules is an efficient solution for repairing cracked cementitious composites. Self-repairing based on microcapsules begins with the occurrence of cracks and develops by releasing self-repairing factors in the cracks located in concrete. Based on previous comprehensive studies, this paper provides an overview of various repairing factors and investigative methodologies. There has recently been a lack of consensus on the most efficient criteria for assessing self-repairing based on microcapsules and the smart solutions for improving capsule survival ratios during mixing. The most commonly utilized self-repairing efficiency assessment indicators are mechanical resistance and durab
... Show MoreIn many industries especially oil companies in Iraq consumed large quantities of water which will produce oil-contaminated water which can cause major pollution in agricultural lands and rivers. The aim of the present work is to enhance the efficiency of dispersed air flotation technique by using highly effective and cost-efficient coagulant to treating gas oil emulsion. The experimental work was carried out using bubble column made of Perspex glass (5cm I.D, 120cm height). A liquid was at depth of 60cm. Different dosage of sawdust +bentonite at ratio 2:1 (0.5+ 0.25; 1+ 0.5 and 2+1) gm and alum at concentration (10,20and30mg/l) at different pH ( 4 and 7) were used to determine optimum dosages of coagulant. Jar test exper
... Show MoreOrthophoto provides a significant alternative capability for the presentation of architectural or archaeological applications. Although orthophoto production from airphotography of high or lower altitudes is considered to be typical, the close range applications for the large-scale survey of statue or art masterpiece or any kind of monuments still contain a lot of interesting issues to be investigated.
In this paper a test was carried out for the production of large scale orthophoto of highly curved surface, using a statue constructed of some kind of stones. In this test we use stereo photographs to produce the orthophoto in stead of single photo and DTM, by applying the DLT mathematical relationship as base formula in differenti
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreBiodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show More