Objective: The study aims to determine the effectiveness of the continuing nursing education
program on nursing staffs knowledge in kidney transplantation unit and to find out the relationship
between nursing staffs knowledge and demographic characteristics (age, gender, education level, and
years of experiences in kidney transplantation unit).
Methodology: A quasiexperemental design (One-group Pretest - Posttest design) was carried out in
kidney transplantation units at Baghdad Teaching Hospitals, from December 2011 to July 2012. A nonprobability
(purposive sample) of (16) nurses were selected from kidney transplant units at Baghdad
teaching hospitals, the choice was based on the study criteria. The data were collected through the
use of constructed questionnaire and consist from two major parts, part one consist of demographic
characteristics contain (9) and part two consist of (58) items of a multiple choice questions
distributed in (8) major sections. Validity of the instrument was determined through a panel of (8)
experts, and reliability through a pilot study. The data were analyzed through the application of
descriptive and inferential statistical analysis procedures.
Results: The findings of the present study indicate that the continuing nursing education program
was effective on knowledge improvement of the participant’s nurses. The total percent of the
improvements resulted by the effects of applying the continuing nursing education program was
(43.31%). And there was a non-significant relationship between nurse’s knowledge and demographic
characteristics (age, gender, education level, and years of experiences in kidney transplantation unit).
Recommendation: Based on the result of the present study the researcher recommends to carrying
out additional studies on application of nursing education programs about nurses practice on kidney
transplantation in kidney transplant units, and nurses should be encouraged to participate in
continuing education programs and training sessions about kidney transplantation.
In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
The relation between faithful, finitely generated, separated acts and the one-to-one operators was investigated, and the associated S-act of coshT and its attributes have been examined. In this paper, we proved for any bounded Linear operators T, VcoshT is faithful and separated S-act, and if a Banach space V is finite-dimensional, VcoshT is infinitely generated.
The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreIn cyber security, the most crucial subject in information security is user authentication. Robust text-based password methods may offer a certain level of protection. Strong passwords are hard to remember, though, so people who use them frequently write them on paper or store them in file for computer .Numerous of computer systems, networks, and Internet-based environments have experimented with using graphical authentication techniques for user authentication in recent years. The two main characteristics of all graphical passwords are their security and usability. Regretfully, none of these methods could adequately address both of these factors concurrently. The ISO usability standards and associated characteristics for graphical
... Show MoreIn this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreMerging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show More