Objective(s): This study was conducted to deal with the importance and effect of various variables which might
have influence in hydrocephaly occurrence.
Methodology: A retrospective design was performed and continued for 4 months. It included 89 nonrandomized
consecutive samples collected from the Early Detection of Childhood Disabilities Center (E.D.C.D.C.)
Duhok. The population involved was the entire cases of both sexes that attended the centre during the period from
1
st.Jan, 1998 to 30th. Dec. 2008 with final diagnosis of hydrocephaly. Patients’ records from the centre were used to
collect data.
Results: Hydrocephaly has been recognized as a public health problem in Duhok province, Iraqi Kurdistan region,
many aspects of which still remain unclear. The results indicated that males mainly suffer (53.9%), highest
occurrence of hydrocephaly cases occur in summer (42.7%), patients aged 7-10 years were the highest (55.1%),
consanguious parents constitute (57.3%), mother's age group of 26-35 years had the highest occurrence (56.2%),
deliveries conducted in hospitals (85.4%), Duhok city showed the highest incidence (61.8%), normal deliveries were
the highest (83.1%) and finally idiopathic cases were (39.3%).
Recommendations: It is highly recommended to establish hydrocephaly screening units in all maternity
hospitals in Duhok province and discouragement of consanguineous marriages.
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreAny software application can be divided into four distinct interconnected domains namely, problem domain, usage domain, development domain and system domain. A methodology for assistive technology software development is presented here that seeks to provide a framework for requirements elicitation studies together with their subsequent mapping implementing use-case driven object-oriented analysis for component based software architectures. Early feedback on user interface components effectiveness is adopted through process usability evaluation. A model is suggested that consists of the three environments; problem, conceptual, and representational environments or worlds. This model aims to emphasize on the relationship between the objects
... Show MoreHerein, an efficient inorganic/organic hybrid photocatalyst composed of zeolitic imidazolate framework (ZIF-67) decorated with Cd0.5Zn0.5S solid solution semiconductor was constructed. The properties of prepared ZIF- [email protected] nanocomposite and its components (ZIF-67 and Cd0.5Zn0.5S) were investigated using XRD, FESEM, EDX, TEM, DRS and BET methods. The photocatalytic activity of fabricated [email protected] nanocomposite were measured toward removal of methyl violet (MV) dye as a simulated organic contaminant. Under visible-light and specific conditions (photocatalyst dose 1 g/l, MV dye 10 mg/l, unmodified solution pH 6.7 and reaction time 60 min.), the acquired [email protected] photocatalyst showed advanced photocatalytic activity
... Show MoreIn this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreThe global food supply heavily depends on utilizing fertilizers to meet production goals. The adverse impacts of traditional fertilization practices on the environment have necessitated the exploration of new alternatives in the form of smart fertilizer technologies (SFTs). This review seeks to categorize SFTs, which are slow and controlled-release Fertilizers (SCRFs), nano fertilizers, and biological fertilizers, and describes their operational principles. It examines the environmental implications of conventional fertilizers and outlines the attributes of SFTs that effectively address these concerns. The findings demonstrate a pronounced environmental advantage of SFTs, including enhanced crop yields, minimized nutrient loss, improved nut
... Show More