Aims: The present study aims at assessing mothers’ knowledge of breastfeeding in Kirkuk governorate,
besides determining the relationship between mothers’ knowledge and some of their demographic
attributes.
Methodolgy: A descriptive study was used the assessment approach and applied on mothers in Kirkuk
governorate from January 15th 2011 to July 25th
, 2011. Non-probability sampling a convenience sample of
(72) mothers, attending pediatric general hospital in Kirkuk governorate for following up the health status
of their children, was selected for the purpose of the study. A questionnaire was developed for the
purpose of the study. It was comprised of two parts; the first part includes the mothers' demographic
attributes and the second part assessed the knowledge of breastfeeding with (20) True or False questions.
A pilot study was carried out for the period of January 15th to 25th, 2011 to determine the questionnaire
reliability through the use of (Test – Retest). A panel of (8) experts was involved in the determination of the
questionnaire content validity. Data were analyzed through the application of descriptive statistical data
analysis approach (frequency and percentage), and inferential data analysis approach (chi-square).
Results: The study findings revealed that more than half (58.3%) of mothers were young, (45.8%) of them
had completed primary school, more than two-third (84.7%) of them were housewife mothers, (61.1%) of
them have lived inside Kirkuk city, also (61.1) of mothers have more than one children, (63.9%) of them
were regularly visited primary health care center during antenatal period and only (40.3%) of them have
received antenatal orientation about breastfeeding. According to the level of knowledge of breastfeeding,
(66.7%) of mothers answered correctly all questions about breastfeeding, and there was a highly significant
relationship between health education during antenatal period and mothers’ knowledge of breastfeeding.
Recommendations: The study findings highlight the need for excessive health education about
breastfeeding during antenatal period and advice the mothers to comply with recommended visits during
pregnancy period.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreAbstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreThis paper presents a hybrid approach called Modified Full Bayesian Classifier (M-FBC) and Artificial Bee Colony (MFBC-ABC) for using it to medical diagnosis support system. The datasets are taken from Iraqi hospitals, these are for the heart diseases and the nervous system diseases. The M-FBC is depended on common structure known as naïve Bayes. The structure for network is represented by D-separated for structure's variables. Each variable has Condition Probability Tables (CPTs) and each table for disease has Probability. The ABC is easy technique for implementation, has fewer control parameters and it could be easier than other swarm optimization algorithms, so that hybrid with other algorithms to reach the optimal structure. In the
... Show MoreFuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking f
... Show MoreThis article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreAn impressed current cathodic protection system (ICCP) requires measurements of extremely low-level quantities of its electrical characteristics. The current experimental work utilized the Adafruit INA219 sensor module for acquiring the values for voltage, current, and power of a default load, which consumes quite low power and simulates an ICCP system. The main problem is the adaptation of the INA219 sensor to the LabVIEW environment due to the absence of the library of this sensor. This work is devoted to the adaptation of the Adafruit INA219 sensor module in the LabVIEW environment through creating, developing, and successfully testing a Sub VI to be ready for employment in an ICCP system. The sensor output was monitored with an Ardui
... Show MoreSemi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for