Objective(s): This study aims to evaluate the hardness of two commercially available cold cured acrylic resin material
(Vertex and PAN) when polymerized at different temperature in comparison to those polymerized by conventional
methods in air at 23C ± 5C.
Methodology: Eighty specimens, forty from cold cured acrylic (Vertex Type) and forty from cold cured acrylic (PAN
type) were prepared, flasking and packing procedure were done according to manufacturer direction and divided
according to processing as follow: 20 specimens (10 from Vertex type and 10 from PAN type) were processed in air for
two hours at 23C ± 5C under press (bench curing) as a control, and 60 specimens (30 from Vertex type and 30 from
PAN type) were processed by ivomat curing device containing water under air pressure 30 Pascal for 15 minutes at
different temperature: 40C, 60C, and 80C (10 specimens for each groups). All specimens were tested for hardness test
by shore D device.
Results: Result showed that cold cured acrylic type PAN (polymerized by elevated temperature 80˚C) show the
maximum value of hardness (88.696) followed by cold cured acrylic type vertex polymerized at 60˚C (88.471). While,
control group type PAN (polymerized at air bench) recorded the minimum value of hardness (81.83). All groups that
polymerized at high temperature: 40C, 60C, and 80C show the higher value of hardness in comparison to those
processed by conventional methods (at air bench) with significant and highly significant differences.
Recommendations: Studies need to study the effect of increasing time and pressure of curing process on the hardness
of cold cure acrylic material, also to study the effect of increasing temperature of curing on the other properties of
cold cure acrylic material.
The electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
The subject of the information technology system ( ITS ) of the important issues And contemporary thought in management, and various types of organizations seeking to apply and try to
... Show MoreIn this paper, Pentacene based-organic field effect transistors (OFETs) by using different layers (monolayer, bilayer and trilayer) for three different gate insulators (ZrO2, PVA and CYEPL) were studied its current–voltage (I-V) characteristics by using the gradual-channel approximation model. The device exhibits a typical output curve of a field-effect transistor (FET). Source-drain voltage (Vds) was also investigated to study the effects of gate dielectric on electrical performance for OFET. The effect of capacitance semiconductor in performance OFETs was considered. The values of current and transconductance which calculated using MATLAB simulation. It exhibited a value of current increase with increasing source-drain voltage.
In this paper, Pentacene based-organic field effect transistors (OFETs) by using different layers (monolayer, bilayer and trilayer) for three different gate insulators (ZrO2, PVA and CYEPL) were studied its current–voltage (I-V) characteristics by using the gradual-channel approximation model. The device exhibits a typical output curve of a field-effect transistor (FET). Source-drain voltage (Vds) was also investigated to study the effects of gate dielectric on electrical performance for OFET. The effect of capacitancesemiconductor in performance OFETs was considered. The values of current and transconductance which calculated using MATLAB simulation. It exhibited a value of current increase with increasing source-drain voltage.
All the stiffened and unstiffened elastic constants for lead germanate (Pb5Ge3O11) single
crystal have been measured from room temperature 298 K up to 513K by using ultrasonic
pulse superposition technique. The correction of piezoelectric stiffening has been used to
obtain the unstiffened elastic constants. Elastic moduli of lead germanate (C11, C33, C12, C13,
C44 and C66) decrease with the increase of temperature. C11, C33, C
12 and C13 suffered a dip at
transition temperature but they increase with the increase of temperature just above Curie
temperature between 453 and 473 K because of their positive temperature coefficients in this
range, and then decrease slightly (except C12 increases) in the
THE PROBLEM OF TRANSLATING METAPHOR IN AN ARTISTIC TEXT (ON THE MATERIAL OF RUSSIAN AND ARABIC LANGUAGES)
Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreBackground: elastomeric impression materials are indicated when a high degree of accuracy is required, due to their excellent properties like details reproduction, dimensional stability and tear strength but with main two disadvantages those are their hydrophilicity as well as the absence of antibacterial activity. This study aimed to evaluate the effect of incorporation of 0.5% wt Ag-Zn zeolite into condensation silicone through the following tests; setting time, dimensional stability, reproduction of details, wettability, and hardness . Materials and methods: one hundred specimens were constructed of condensation silicone, divided into two groups for the first 50 specimens one0.5% by wt Ag -Zn zeolite was added, keeping the other fifty sp
... Show MoreThis study aims to investigate the effect of changing skins material on the strength of sandwich plates with circular hole when subjected to mechanical loads. Theoretical, numerical and experimental analyses are done for sandwich plates with hole and with two face sheet materials. Theoretical analysis is performed by using sandwich plate theory which depends on the first order shear deformation theory for plates subjected to tension and bending separately. Finite element method was used to analyse numerically all cases by ANSYS program.
The sandwich plates were investigated experimentally under bending and buckling load separately. The relationship between stresses and the ratio of hole diameter to plate width (d/b) are built, by
... Show More