Wireless Sensor Networks (WSNs) are composed of a collection of rechargeable sensor nodes. Typically, sensor nodes collect and deliver the necessary data in response to a user’s specific request in many application areas such as health, military and domestic purposes. Applying routing protocols for sensor nodes can prolong the lifetime of the network. Power Efficient GAthering in Sensor Information System (PEGASIS) protocol is developed as a chain based protocol that uses a greedy algorithm in selecting one of the nodes as a head node to transmit the data to the base station. The proposed scheme Multi-cluster Power Efficient GAthering in Sensor Information System (MPEGASIS) is developed based on PEGASIS routing protocol in WSN. The aim of the proposed scheme is to introduce a transmission power control system based on the residual energy level and the energy harvesting status of each sensor node to extend the overall lifetime of WSN and to balance the energy usage, this leads to increasing network lifetime and decreasing energy consumption. MPEGASIS outperforms PEGASIS protocol by about 19%, and LEACH protocol by about 34%. For the sake of performance evaluation, MPEGASIS protocol besides PEGASIS and LEACH protocols are simulated and compared using Network Simulator (NS2).
The existence of the Internet, networking, and cloud computing support a wide range of new technologies. Blockchain is one of these technologies; this increases the interest of researchers who are concerned with providing a safe environment for the circulation of important information via the Internet. Maintaining solidity and integrity of a blockchain’s transactions is an important issue, which must always be borne in mind. Transactions in blockchain are based on use of public and private keys asymmetric cryptography. This work proposes usage of users’ DNA as a supporting technology for storing and recovering their keys in case those keys are lost — as an effective bio-cryptographic recovery method. The RSA private key is
... Show MoreThe research aim was to observe the distribution pattern of
This paper reports on the laser emission properties of the BBQ dye in poly (methyl meth-acrylate)(PMMA). This host material combines the advantages of an organic environment for dye with the thermoptical mechanical properties of an organic dye. A BBQ dye solid solution in PMMA polymer. A nitrogen laser in untuned laser cavity has pumped thin films. We developed the concentration and the thickness to get high efficiency. The laser efficiency had been increased from 7% at thickness 1.5 m to 16.5% at thickness 3.5m, and from 1% to 10% when concentration increased from 1x10-5M to 1x10-3 M
A simple, accurate and precise spectrophotometric method has been developed for the analysis of sulfamethoxazole (SMZ) in pure form and pharmaceutical preparation. The method involves a direct charge transfer complexation of sulfamethoxazole (SMZ) with sodium nitroprusside (SNP) in alkaline medium and the presence of hydroxyl amine hydrochloride. Variables affecting the formation of the formed orange colored complex were optimized following two approaches univariate and central composite experimental design (CCD) multivariate. Under optimum recommended conditions, the formed complex exhibits λmax at 512 nm and the method conforms Beer's law for SMZ concentration in the range of 5.0-150.0 (µg.mL-1) with molar absorptivi
... Show MoreMagnesium-doped Zinc oxide (ZnO: Mg) nanorods (NRs) films and pure Zinc oxide deposited on the p-silicon substrates were prepared by hydrothermal method. The doping level of the Mg concentration (atoms ratio of Mg to Zn was chosen to be 0.75% and 1.5%. X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) were performed to characterize the prepared films. X-ray diffraction analysis showed a decrease in the lattice parameters of the Mg-doped ZnO NRs. Under 10V applied bias voltage, the responsivity of p-n junction UV photodiode based on pure ZnO and Mg: ZnO with doping ratio (0.75% and 1.5%) was 0.06 A/W and (0.15A/W and 0.27A/W) at UV illumination of wavelength 365 nm respectively, 0.071 A/W and (0.084A/W and 0.11A/W) fo
... Show MoreElectrospun nanofiber membranes are employed in a variety of applications due to its unique features. the nanofibers' characterizations are effected by the polymer solution. The used solvent for dissolving the polymer powder is critical in preparing the precursor solution. In this paper, the Polyacrylonitrile (PAN)-based nanofibers were prepared in a concentration of 10 wt.% using various solvents (NMP, DMF, and DMSO). The surface morphology, porosity, and the mechanical strength of the three prepared 10 wt.% PAN-based nanofibers membranes (PAN/NMP, PAN/DMF, and PAN/DMSO) were characterized using the Scanning Electron Microscopy (SEM), Dry-wet Weights method, and Dynamic Mechanical Analyzer (DMA). Using DMF as a solvent resulted in a lon
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database