In this paper, the fundamental harmonic of a Nd:YAG laser (Q-switched 1064nm wavelength, 1 Hz repetition rate and 9 ns pulse duration) has been used for the ablation of cadmium samples in air at atmospheric pressure and the generation of the cadmium plasma. The experimentally observed lines of cadmium plasma emission have been used to calculate the plasma parameters such as (electron temperature (TReR), electron density (nReR), Debye length (λRDR) and plasma frequency (ωRpR)). Line pair ratio of neutral species have been used for the electron temperature and electron density measurements. Plasma parameters were studied as a functions of laser pulse energy.
The simulation study has been conducted for the harmonics of Nd: YAG laser, namely the second harmonic generation SHG, the third harmonic generation THG, and the fourth harmonic generation FHG. Determination of beam expander's expansion ratio for specific wavelength and given detection range is the key in beam expander design for determining minimum laser spot size at the target. Knowing optimum expansion ratio decreases receiving unit dimensions and increases its performance efficiency. Simulation of the above mentioned parameters is conducted for the two types of refractive beam expander, Keplerian and Galilean. Ideal refractive indices for the lenses are chosen adequately for Nd: YAG laser harmonics wavelengths, so that increasing transm
... Show MoreIntroduction: The study was intended for Roseomonas gilardii NTCC 13290 strain pigment extraction and characterization. Methodology: The pigment-producing bacterial were cultured on Columbia blood agar and nutrient media agar. Then the pigments were extracted by ethanol. The candidate pigment was further characterized by different biotechnological techniques: UV-Vis spectroscopy, FT-IR to analyze the functional group of the targeted pigment, and TLC media. Results: The cultivation of Roseomonas gilardii on media showed pink color and nearly runny texture. The bacterial colonies were microscopically gram stained and examined, the R. gilardii was seen as coccobacillus colonies that mostly form pairs arranged as short chains. The R. gilardii b
... Show MoreTin oxide (Sn) nanoparticles were prepared by pulsed laser ablation (PLA) method at different laser energies (400-700mJ). (UV, XRD, AFM, SEM, EDS) methods were employed to determine the properties of nanomaterials. The optical properties showed that the energy gap decreased with increasing laser power; the structural properties showed the relationship between density and angle; Miller's coefficients for net angles were determined and the morphology properties showed the element's surface shape and surface roughness. Also, Tin oxide nanoparticles with added to Staphylococcus aureus bacteria isolated from the ear and cultured by striking method on nutrient agar to know the effect of tin oxide nanoparticles on the growth o
... Show MoreStaphylococcal enterotoxin B (SEB) is a potent superantigen produced by
This work aimed to investigate the effect of Diode laser 805 nm on plasmid DNA and RNA
contents of some Gram negative bacteria represented by Escherichia coli and Proteus mirabilis isolates
.Plasmid extraction was done using two methods (Salting out and CTAB method).Different powers and
pulse repetition rates for 805 nm Diode Laser were used to study this effect. Results revealed that the
plasmid profile of the two species were highly affected using (2, 3) W at different frequencies including
5and 10 kHz as compared with 1 kHz while plasmids were gradually disappeared at 1W, 10 kHz. In the
same time the shining of RNA was also decreased gradually then disappeared with increasing powers
especially at 2W and 10 kHz cau
In this research prepare membranes pure silicon carbide (SiC) as well as gas Alloy (ammonia) and using a laser was leaked membrane of glass flooring. To Drasesh optical properties of membranes prepared depending on the technique (Swanepoel) and Adhrt results obtained in general increased permeability pure silicon membranes
Zinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150