There are growing concerns over the possibility of transfer genetically modified
sequences from genetically modified feed component (GM feed) to animals and
their products, moreover, affect these sequences on animal and human health. This
study was implemented to detect P35S in modified feed by using PCR technique by
detecting presence P35S promoter, which responsible for the regulation of gene
expression for most of the transgenic genes. Thirty eight feed samples were
collected from different sources of Baghdad markets, which have been used for
feeding livestock, comprise 21 coarse mixes feed, 13 pelleted feed, and 4 expanded
feed. Genomic DNA was extracted by using two methods, CTAB method and
Wizard kit. In order to verify the presence (P35S) in feed samples, a pair of primer
for 35S promoter was used. The results of the present study showed that 58% of
tested samples contained promoter P35S this means presence genetically modified
feed in the Baghdad market
Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local
... Show MoreIn this study, only four isolates produce CNF1 from 76 isolatesof uropathogenic Escherichia coli.cnf1 gene was detected by using PCR technique, while cytotoxic necrotizing factor 1(CNF1) was determined by Immunoblotting assay.
Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreIn recent years, with the growing size and the importance of computer networks, it is very necessary to provide adequate protection for users data from snooping through the use of one of the protection techniques: encryption, firewall and intrusion detection systems etc. Intrusion detection systems is considered one of the most important components in the computer networks that deal with Network security problems. In this research, we suggested the intrusion detection and classification system through merging Fuzzy logic and Artificial Bee Colony Algorithm. Fuzzy logic has been used to build a classifier which has the ability to distinguish between the behavior of the normal user and behavior of the intruder. The artificial bee colony al
... Show MoreRecent researches showed that DNA encoding and pattern matching can be used for the intrusion-detection system (IDS), with results of high rate of attack detection. The evaluation of these intrusion detection systems is based on datasets that are generated decades ago. However, numerous studies outlined that these datasets neither inclusively reflect the network traffic, nor the modern low footprint attacks, and do not cover the current network threat environment. In this paper, a new DNA encoding for misuse IDS based on UNSW-NB15 dataset is proposed. The proposed system is performed by building a DNA encoding for all values of 49 attributes. Then attack keys (based on attack signatures) are extracted and, finally, Raita algorithm is app
... Show MoreUntil recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)
This research deals with processing and Interpretation of Bouguer anomaly gravity field, using two dimensional filtering techniques to separate the residual gravity field from the Bouguer gravity map for a part of Najaf Ashraf province in Iraq. The residual anomaly processed in order to reduce noise and give a more comprehensive vision about subsurface linear structures. Results for descriptive interpretation presented as colored surfaces and contour maps in order to locate directions and extensions of linear features which may interpret as faults. A comparison among gravity residual field , 1st derivative and horizontal gradient made along a profile across the study area in order to assign the exact location of a major fault. Furthermor
... Show MoreDue to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on
... Show More