In this paper, we propose new types of non-convex functions called strongly --vex functions and semi strongly --vex functions. We study some properties of these proposed functions. As an application of these functions in optimization problems, we discuss some optimality properties of the generalized nonlinear optimization problem for which we use, as an objective function, strongly --vex function and semi strongly --vex function.
In this article, the notions are introduced by using soft ideal and soft semi-open sets, which are - - - -closed sets " -closed" where many of the properties of these sets are clarified. Some games by using soft- -semi, soft separation axioms: like ( 0 ( 0 Using many figures and proposition to study the relationships among these kinds of games with some examples are explained.
The subject of multi- ethnics is one of the most important subjects in the study of political
geography, as multi- ethnics and its consequent problems are global geopolitical phenomena
that started early and reached its peak with the beginning of the twentieth century, because of
major changes in the political landscape that resulted by wars and led to the collapse of many
empires and major powers, a matter which led to put new political maps according to certain
considerations of the colonial powers, especially in Africa and Asia. All these things led to
the most serious challenges based on ethnic and sectarian conflict and led to the development
of geopolitical problems. Among the examples what most countries in th
The aim of this research is to investigation the optimization of the machining parameters (spindle speed, feed rate, depth of cut, diameter of cutter and number of flutes of cutter) of surface roughness for free-form surface of composite material (Aluminum 6061 reinforced boron carbide) by using HSS uncoated flat end mill cutters which are rare use of the free-form surface. Side milling (profile) is the method used in this study by CNC vertical milling machine. The purpose of using ANFIS to obtain the better prediction of surface roughness values and decreased of the error prediction value and get optimum machining parameters by using Taguchi method for the best surface roughness at spindle speed 4500 r.p.m, 920mm/rev feed rate, 0.6mm de
... Show MoreIn this paper, we introduce a new class of Weighted Rayleigh Distribution based on two parameters, one is the scale parameter and the other is the shape parameter introduced in Rayleigh distribution. The main properties of this class are derived and investigated . The moment method and least square method are used to obtain estimators of parameters of this distribution. The probability density function, survival function, cumulative distribution and hazard function are derived and found. Real data sets are collected to investigate two methods that depend on in this study. A comparison is made between two methods of estimation and clarifies that MLE method is better than the OLS method by using the mea
... Show MoreThe paper starts with the main properties of the class of soft somewhere dense open functions and follows their connections with other types of soft open functions. Then preimages of soft sets with Baire property and images of soft Baire spaces under certain classes of soft functions are discussed. Some examples are presented that support the obtained results. Further properties of somewhere dense open functions related to different types of soft functions are found under some soft topological properties.
The following question was raised by L.Fuchs: "what are the subgroups of an abelian group G that can be represented as intersections of pure subgroups of G ? . Fuchs also added that “One of my main aims is to give the answers to the above question". In this paper, we shall define new subgroups which are a family of the pure subgroups. Then we shall answer problem 2 of L.Fuchs by these semi-pure subgroups which can be represented as the intersections of pure subgroups.
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
In this paper, we generalize many earlier differential operators which were studied by other researchers using our differential operator. We also obtain a new subclass of starlike functions to utilize some interesting properties.