Preferred Language
Articles
/
ijs-970
Strongly and Semi Strongly E_h-b-Vex Functions: Applications to Optimization Problems
...Show More Authors

In this paper, we propose new types of non-convex functions called strongly --vex functions and semi strongly --vex functions. We study some properties of these proposed functions. As an application of these functions in optimization problems, we discuss some optimality properties of the generalized nonlinear optimization problem for which we use, as an objective function, strongly --vex function and semi strongly --vex function.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Galaxy Morphological Image Classification using ResNet
...Show More Authors

     Machine learning-based techniques are used widely for the classification of images into various categories. The advancement of Convolutional Neural Network (CNN) affects the field of computer vision on a large scale. It has been applied to classify and localize objects in images. Among the fields of applications of CNN, it has been applied to understand huge unstructured astronomical data being collected every second. Galaxies have diverse and complex shapes and their morphology carries fundamental information about the whole universe. Studying these galaxies has been a tremendous task for the researchers around the world. Researchers have already applied some basic CNN models to predict the morphological classes

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
ON Numerical Blow-Up Solutions of Semilinear Heat Equations
...Show More Authors

This paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.

View Publication Preview PDF
Scopus (14)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
A Mathematical Modelling of a Plant-Herbivore Community with Additional Effects of Food on the Environment
...Show More Authors

     By taking into account various food components in the ecosystem, the research intends to develop a set of difference equations to simulate a plant-herbivore interaction of Holling Type II. We determine the local stability of the equilibrium points for the scenarios of extinction, semi-extinction (extinction for one species), and coexistence using the Linearized Stability Theorem. For a suitable Lyapunov function, we investigate theoretical findings to determine the global stability of the coexisting equilibrium point. It is clear that the system exhibits both Flip and Neimark-Sacker bifurcation under particular circumstances using the central manifold theorem and the bifurcation theory. Numerical simulations are

... Show More
View Publication
Scopus (20)
Crossref (5)
Scopus Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Kuwait Journal Of Science
Three iterative methods for solving Jeffery-Hamel flow problem
...Show More Authors

In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Some Results on Fixed Points for Monotone Inward Mappings in Geodesic Spaces
...Show More Authors

In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping,  a monotone inward contraction mapping is a  monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Estimation of Survival Function for Rayleigh Distribution by Ranking function:-
...Show More Authors

In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using   is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Blow-up Properties of a Coupled System of Reaction-Diffusion Equations
...Show More Authors

    This paper is concerned with a Coupled Reaction-diffusion system defined in a ball with homogeneous Dirichlet boundary conditions. Firstly, we studied the blow-up set showing that, under some conditions, the blow-up in this problem occurs only at a single point. Secondly, under some restricted assumptions on the reaction terms, we established the upper (lower) blow-up rate estimates. Finally, we considered the Ignition system in general dimensional space as an application to our results.

View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Some Types of Mappings in Bitopological Spaces
...Show More Authors

            This work, introduces some concepts in bitopological spaces, which are nm-j-ω-converges to a subset, nm-j-ω-directed toward a set, nm-j-ω-closed mappings, nm-j-ω-rigid set, and nm-j-ω-continuous mappings. The mainline idea in this paper is nm-j-ω-perfect mappings in bitopological spaces such that n = 1,2  and m =1,2 n m. Characterizations concerning these concepts and several theorems are studied, where j = q , δ, a , pre, b, b.

 

View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Mar 14 2023
Journal Name
Iraqi Journal Of Science
On Two Sided -n-Derivations in Prime near – Rings
...Show More Authors

In this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.

View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules
...Show More Authors

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri

... Show More
View Publication Preview PDF
Crossref (1)
Crossref