Four major factories (Petroleum Refineries Company, Detergents Plant, Thermal Power Plant, and Gaseous Power Plant) are located to the north of Baiji City. They release pollutants in form of gases, liquids and solids; they find their way to the surrounding environment. To assess the environmental pollution of the area, 18 samples of surface soil distributed around the industrial establishments were collected and analyzed to determine the concentration of polycyclic aromatic hydrocarbons (PAH) components which are often targets in the environmental checking. Identification and quantification of the 16 PAHs components was accomplished using High Performance Liquid Chromatography (HPLC) had a model Shimadzu LC-10 AVP. The total concentrations of 16 PAHs were ranged from (94.9) to (416.3) μg/kg with an average value of (217.5) μg/kg. The most abundant PAHs was Fluorene followed by Acenaphthylene, Naphthalene, Chrysene, Phenanthrene, Benzo(b)fluora-nthene, Fluoranthene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(g,h,i)perylene, Dibenzo(a,h)anthracene, Indeno(1,2,3-cd) pyrene, Pyrene, Acenaphthene, Anthracene, and Benzo(k)fluoranthene.
Seven possible carcinogenic PAHs (Σ7c-PAHs) accounted 38.9 % to the total PAHs. The petroleum combustion and biomass combustion were the main sources of PAHs in the surface soil. The mean values of cancer risk levels for children via ingestion, dermal contact, and inhalation were (6.02*10-7), (7.51*10-7) and (5.91*10-12) respectively, suggesting no potential health hazards, while these for adults were (1.78*10-6), (3.16*10-6) and (1.40*10-10) respectively, implying potential health risks via ingestion and dermal contact, but not via inhalation exposure. The total value of ILCRing+drm+inh for children and adults via three exposure pathways were (2.43*10-5) and (8.90*10-5) respectively, indicating potential health risks.
This work studies the impact of input machining parameters of Electrical Discharge Machining (EDM) on the machining process performance. Tool steel O1 was selected as the workpiece material, copper as the electrode material, and kerosene as the dielectric medium. Experimental runs have been carried out with a Design of Experiment (DOE) technique. Twenty tests are accomplished with the current range of (18 to 24 Ampere), a pulse duration range of (150 to 200 µs), and a pulse-off time range of (25 to 75 µs). Based upon the experimental study's output results, the EDM parameter's effect (voltage of power supply, discharge current, pulse duration, and pulse pause interval) on the responses of the process represented by sur
... Show MoreMost dental works require a diagnostic impression; alginate is contemplated as the most popular material used for this purpose. Titanium dioxide nanoparticles show evidence of antimicrobial activity in the recent era, for this purpose, this study aimed to evaluate the effect of adding Titanium dioxide nanoparticles on antimicrobial activity and surface detail reproduction of alginate impression material. Materials and methods: Titanium dioxide nanoparticles (purity = 99%, size= 20nm) was added to alginate at three different concentrations (2%, 3% and 5%). 84 samples were prepared in total. Samples were tested for antimicrobial activity using a disc diffusion test, and surface detail reproduction was done using (ISO 21563:2021). One-way A
... Show MoreThis paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreMagnetic Abrasive Finishing (MAF) is an advanced finishing method, which improves the quality of surfaces and performance of the products. The finishing technology for flat surfaces by MAF method is very economical in manufacturing fields an electromagnetic inductor was designed and manufactured for flat surface finishing formed in vertical milling machine. Magnetic abrasive powder was also produced under controlled condition. There are various parameters, such as the coil current, working gap, the volume of powder portion and feed rate, that are known to have a large impact on surface quality. This paper describes how Taguchi design of experiments is applied to find out important parameters influencing the surface quality generated during
... Show MorePurpose: To evaluate the effect of different surface treatments on shear bond strength between dentin and IPS e.max lithium disilicate glass-ceramic. Materials and Methods: Eighteen extracted third molars were embeded in epoxy resin. The tooth was sectioned vertically in mesiodistal direction using a low speed hard tissue microtome. The buccal and lingual surfaces of each section were ground flat using 600 grit Silicone carbide paper. Eighteen ceramic discs consisted of lithium disilicate glass-ceramic were prepared with a diameter of 4.7mm and height of 2.2mm. The discs were divided in two groups (n=10): (1) IPS e.max treated with hydrofluoric acid and Monobond Plus (MBP) and (2) IPS e.max treated with Monobond Etch &Prime (MBEP). The toot
... Show MoreBackground The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show More