ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, automation of drainage network extraction from DEMs is an efficient way and has received considerable attention. This study aims to extract drainage networks from Digital Elevation Model (DEM) for Lesser Zab River Basin. Composition parameters of the drainage network including the numbers of streams and the stream lengths are derived from the DEM beside the delineation of catchment areas in the basin. The results from this application can be used to create input files for many hydrologic models.
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreIn this work, radius of shock wave of plasma plume (R) and speed of plasma (U) have been calculated theoretically using Matlab program.
Abstract:
This research aims to identify the impact of the Layout Ghazi al-Hariri hospital for surgery specialist on customer satisfaction (patients) using the model (Servicescape), the problem of the research represented in the extent to which the hospital management design of the service and Layout hospital aesthetic and functional aspects that fit patients for therapeutic and nursing services , and used the developer scale by (Miles et al., 2012) for data collection, which includes the independent variable in (17) items distributed in three dimensions (Facility aesthetics , hospital cleanliness, and the Layout accessibility ) The dependent variable is the satisfaction of customers (pat
... Show MoreTo maintain river flows necessary to meet social and ecological objectives, instream environmental flows are frequently used as a strategy. The capability of three alternative historical flow approaches to protect against low flows is shown in this study using gage stations in the Shatt Al-Hillah River in Iraq. The extension of the Shatt al-Hillah River is the focus of this research discussion on environmental flow assessment. The available data on discharge in this research were adopted for ten years from 2012-2021. Different flow methods were adopted to establish a minimum environmental flow in the Shatt Al-Hillah River. Three hydrological-based approaches: Tennant, modified Tennant, and low-flow metrics like 7Q10, wer
... Show MoreA total of 722 algal taxa are recorded in Diyala River by different authors. Most of the identification algae belong to three Divisions: Bacillariophyceae (367, 50.8%), Chlorophyceae (179, 24.8%), and Cyanophyceae (126, 17.5%).
Abstract:
Since the railway transport sector is very important in many countries of the world, we have tried through this research to study the production function of this sector and to indicate the level of productivity under which it operates.
It was found through the estimation and analysis of the production function Kub - Duglas that the railway transport sector in Iraq suffers from a decline in the level of productivity, which was reflected in the deterioration of the level of services provided for the transport of passengers and goods. This led to the loss of the sector of importance in supporting the national economy and the reluctance of most passengers an
... Show More