ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, automation of drainage network extraction from DEMs is an efficient way and has received considerable attention. This study aims to extract drainage networks from Digital Elevation Model (DEM) for Lesser Zab River Basin. Composition parameters of the drainage network including the numbers of streams and the stream lengths are derived from the DEM beside the delineation of catchment areas in the basin. The results from this application can be used to create input files for many hydrologic models.
Electronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the ene
... Show MoreAn experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm) , was tested under climate condition of Baghdad city with a (43° tilt angel) by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width), which was manufactured from iron painted with a black matt.
The experimental test deals with five types of absorber:-
Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber .
The hourly and average efficiency of the collectors
... Show MoreThis paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
One of the most important virulence factors in Pseudomonas aeruginosa is biofilm formation, as it works as a barrier for entering antibiotics into the bacterial cell. Different environmental and nutritional conditions were used to optimize biofilm formation using microtitre plate assay by P. aeruginosa. The low nutrient level of the medium represented by tryptic soy broth (TSB) was better in biofilm formation than the high nutrient level of the medium with Luria Broth (LB). The optimized condition for biofilm production at room temperature (25 °C) is better than at host temperature (37 °C). Moreover, the staining with 0.1% crystal violet and reading the biofilm with wavelength 360 are considered essential factors in
... Show MoreThe radial wave functions of the cosh potential within the three-body model of (Core+ 2n) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich 6He, 11Li, 14Be, and 17B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.
A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit