ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, automation of drainage network extraction from DEMs is an efficient way and has received considerable attention. This study aims to extract drainage networks from Digital Elevation Model (DEM) for Lesser Zab River Basin. Composition parameters of the drainage network including the numbers of streams and the stream lengths are derived from the DEM beside the delineation of catchment areas in the basin. The results from this application can be used to create input files for many hydrologic models.
Biodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
Excessive intake of fluoride, mainly through drinking water is a serious health hazard affecting humans worldwide. In this study, the defluoridation capacities of locally available raw waste beef bones have been estimated. Several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existence of anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal effeciency up to 99.7% at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the ps
... Show MoreIn order for the process of removing pollutants, including dyes, from the aquatic environment to be effective, plant wastes such as banana peels were used as adsorbent surfaces by thermally activating them (ABP) and modifying them with iron oxide nanoparticles (MABP), which were characterized using Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) techniques. They were applied in the field of Janus green (JG) dye adsorption for the batch system and studied the effect of several factors (adsorbent weight, contact time, initial concentration, and temperature). Their data were analyzed kinetically using first- and second-order kinetic models and they were found to follow the second order. Their data were also analyzed thro
... Show MoreIn order for the process of removing pollutants, including dyes, from the aquatic environment to be effective, plant wastes such as banana peels were used as adsorbent surfaces by thermally activating them (ABP) and modifying them with iron oxide nanoparticles (MABP), which were characterized using Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) techniques. They were applied in the field of Janus green (JG) dye adsorption for the batch system and studied the effect of several factors (adsorbent weight, contact time, initial concentration, and temperature). Their data were analyzed kinetically using first- and second-order kinetic models and they were found to follow the second order. Their data were also analyzed thro
... Show MoreWater contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreThe adsorption of Cr (VI) from aqueous solution by spent tea leaves (STL) was studied at different initial Cr (VI) concentrations, adsorbent dose, pH and contact time under batch isotherm experiments The adsorption experiments were carried out at 30°C and the effects of the four parameters on chromium uptake to establish a mathematical model description percentage removal of Cr (VI). The
analysis results showed that the experimental data were adequately fitted to second order polynomial model with correlation coefficients for this model was (R2 = 0.9891). The optimum operating parameters of initial Cr (VI) concentrations, adsorbent dose, pH and contact time were 50 mg/l, 0.7625 g, 3 and 100 min, respectively. At these conditions, th
Phosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa