Simple and sensitive kinetic methods are developed for the determination of Paracetamol in pure form and in pharmaceutical preparations. The methods are based on direct reaction (oxidative-coupling reaction) of Paracetamol with o-cresol in the presence of sodium periodate in alkaline medium, to form an intense blue-water-soluble dye that is stable at room temperature, and was followed spectrophotometriclly at λmax= 612 nm. The reaction was studied kinetically by Initial rate and fixed time (at 25 minutes) methods, and the optimization of conditions were fixed. The calibration graphs for drug determination were linear in the concentration ranges (1-7 μg.ml-1) for the initial rate and (1-10 μg.ml-1) for the fixed time methods at 25 min. The methods were applied successfully for the determination of Paracetamol in pharmaceutical.
This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
The isomerization of n-hexane on platinum loaded acidic zeolite was studied at atmospheric pressure, H2/nC6 molar ratios of 1-4 and temperature range of 240-270ºC. The measured kinetic data were fitted to an equation based on the bifunctional mechanism and by using independently obtained dehydrogenation and adsorption data. The activation energies of protonation (ΔHpro) and the elementary isomerization step (Eact,iso) and as well as the corresponding preexponential factor were simultaneously determined. The observed values of both ΔHpro and Eact,iso are in agreement with the results of quantum-chemical calculations.
The effect of short range correlations on the inelastic Coulomb form factors for excited +2 states (1.982, 3.919, 5.250 and 8.210MeV) and +4 states (3.553, 7.114, 8.960 and 10.310 MeV) in O18 is analyzed. This effect (which depends on the correlation parameterβ) is inserted into the ground state charge density distribution through the Jastrow type correlation function. The single particle harmonic oscillator wave function is used with an oscillator size parameter .b The parameters β and b are adjusted for each excited state separately so as to reproduce the experimental root mean square charge radius of .18O The nucleusO18 is considered as an inert core of C12 with two protons and four neutrons distributed over 212521211sdp−− activ
... Show MoreThe present study aims at identifying the styles, procedures of Iraqi universities to avoid plagiarism and evaluate these steps, also to evaluate the form prepared by the Directory of Scientific Supervision and Evaluation, Ministry of Higher Education and Scientific Research. The study uses documentary style, 150 teachers in the following colleges (Education Ibn Rushd, Languages and Arts) in university of Baghdad whom already used the aforementioned list were the sample of the study and they asked to give their opinions about the list.The study consists of five sections, first one deals with general view, second explains plagiarism and its types, shapes and reasons,third tackles with ways of detecting plagiarism, its programs, consequences
... Show MoreAn expression for the transition charge density is investigated where the deformation in nuclear collective modes is taken into consideration besides the shell model transition density. The inelastic longitudinal form factors C2 calculated using this transition charge density with excitation of the levels for Cr54,52,50 nuclei. In this work, the core polarization transition density is evaluated by adopting the shape of Tassie model together with the derived form of the ground state two-body charge density distributions (2BCDD's). It is noticed that the core polarization effects which represent the collective modes are essential in obtaining a remarkable agreement between the calculated inelastic longitudinal F(q)'s and those of experimen
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show MoreMany of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show More