In this paper we present a study on Peristaltic of fractional generalized Maxwell viscoelastic fluid through a porous medium. A modified Darcy-Brinkman model is utilized to simulate the flow of a generalized Maxwell fluid in a porous medium in an inclined channel with slip effect. The governing equation is simplified by assuming long wavelength and low Reynolds number approximations. The numerical and approximate analytical solutions of the problem are obtained by a semi-numerical technique, namely the homotopy perturbation method. The influence of the dominating physical parameters such as fractional Maxwell parameter, relaxation time, amplitude ratio, permeability parameter, Froude number, Reynolds number and inclination of channel on the flow characteristics are depicted graphically.
This paper consist some new generalizations of some definitions such: j-ω-closure converge to a point, j-ω-closure directed toward a set, almost j-ω-converges to a set, almost j-ω-cluster point, a set j-ω-H-closed relative, j-ω-closure continuous mappings, j-ω-weakly continuous mappings, j-ω-compact mappings, j-ω-rigid a set, almost j-ω-closed mappings and j-ω-perfect mappings. Also, we prove several results concerning it, where j Î{q, δ,a, pre, b, b}.
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .