Let be a commutative ring with unity and let be a submodule of anon zero left R-module , is called semiprime if whenever , implies . In this paper we say that is nearly semiprime, if whenever , implies ( ),(in short ),where ( )is the Jacobson radical of . We give many results of this type of submodules.
A submodule Ϝ of an R-module Ε is called small in Ε if whenever , for some submodule W of Ε , implies . In this paper , we introduce the notion of Ζ-small submodule , where a proper submodule Ϝ of an R-module Ε is said to be Ζ-small in Ε if , such that , then , where is the second singular submodule of Ε . We give some properties of Ζ-small submodules . Moreover , by using this concept , we generalize the notions of hollow modules , supplement submodules, and supplemented modules into Ζ-hollow modules, Ζ-supplement submodules, and Ζ-supplemented modules. We study these concepts and provide some of their relations .
The main goal of this paper is to give a new generalizations for two important classes in the category of modules, namely the class of small submodules and the class of hollow modules. They are purely small submodules and purely hollow modules respectively. Various properties of these classes of modules are investigated. The relationship between purely small submodules and P-small submodules which is introduced by Hadi and Ibrahim, is studied. Moreover, another characterization of purely hollow modules is considered.
Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.
In this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule of an -module is called an approximaitly prime submodule of (for short app-prime submodule), if when ever , where , , implies that either or . So, an ideal of a ring is called app-prime ideal of if is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.
The aim of this work is studying many concepts of a pure submodule related to sub-module L and introducing the two concepts, T_pure submodule related to submodule and the crossing property of T_pure related to submodule. Another characterizations and study some properties of this concept.
Let R be a commutative ring with identity and let M be a unital left Rmodule.
Goodearl introduced the following concept :A submodule A of an R –
module M is an y – closed submodule of M if is nonsingular.In this paper we
introduced an y – closed injective modules andchain condition on y – closed
submodules.
Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
Let h is Γ−(λ,δ) – derivation on prime Γ−near-ring G and K be a nonzero semi-group ideal of G and δ(K) = K, then the purpose of this paper is to prove the following :- (a) If λ is onto on G, λ(K) = K, λ(0) = 0 and h acts like Γ−hom. or acts like anti–Γ−hom. on K, then h(K) = {0}.(b) If h + h is an additive on K, then (G, +) is abelian.
The main objective of this thesis is to study new concepts (up to our knowledge) which are P-rational submodules, P-polyform and fully polyform modules. We studied a special type of rational submodule, called the P-rational submodule. A submodule N of an R-module M is called P-rational (Simply, N≤_prM), if N is pure and Hom_R (M/N,E(M))=0 where E(M) is the injective hull of M. Many properties of the P-rational submodules were investigated, and various characteristics were given and discussed that are analogous to the results which are known in the concept of the rational submodule. We used a P-rational submodule to define a P-polyform module which is contained properly in the polyform module. An R-module M is called P-polyform if every es
... Show More