In recent years, with the growing size and the importance of computer networks, it is very necessary to provide adequate protection for users data from snooping through the use of one of the protection techniques: encryption, firewall and intrusion detection systems etc. Intrusion detection systems is considered one of the most important components in the computer networks that deal with Network security problems. In this research, we suggested the intrusion detection and classification system through merging Fuzzy logic and Artificial Bee Colony Algorithm. Fuzzy logic has been used to build a classifier which has the ability to distinguish between the behavior of the normal user and behavior of the intruder. The artificial bee colony algorithm has been used to build the classifier which was used to classify the intrusion into one of the main types (DoS, R2L , U2R, Prob). The proposed system has the ability to detect and classify intrusion at high speed with a small percentage of false alarms as well as to detect the new attacks. The NSL-KDD dataset used in the training and testing the proposed system.The results of experiments showed that the efficiency of the proposed system performance were (97.59%) for the intrusion detection, and (0.12%) for the false alarms. Also, the Classification rates for classes (DoS, R2L,U2R,Prob) were (97.19, 77.09, 98.43, 93.23) Respectively, which is considered a superior performance comparing with other methods in the literature.
Quantum gates which are represented by unitary matrices have potentials to implement the reversible logic circuits. M and M+ gates are two well-known quantum gates which are used to synthesize the reversible logic circuits. In this work, we have used behavioral description of these gates, instead of unitary matrix description, to synthesize reversible logic circuits. By this method, M and M+ gates are shown in the truth table form.
One of the important units in Sharq Dijla Water Treatment Plant (WTP) first and second extensions are the alum solution preparation and dosing unit. The existing operation of this unit accomplished manually starting from unloading the powder alum in the preparation basin and ending by controlling the alum dosage addition through the dosing pumps to the flash mix chambers. Because of the modern trend of monitoring and control the automatic operation of WTPs due to the great benefits that could be gain from optimum equipment operation, reducing the operating costs and human errors. This study deals with how to transform the conventional operation to an automatic monitoring and controlling system depending on a Programmable
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn this paper, developed Jungck contractive mappings into fuzzy Jungck contractive and proved fuzzy fixed point for some types of generalize fuzzy Jungck contractive mappings.
Before users store data in the cloud, many security issues must be addressed, as they will have no direct control over the data that has been outsourced to the cloud, particularly personal and sensitive data (health, finance, military, etc.). This article proposes a system based on chaotic maps for private key generation. A hybrid encryption for fast and secure cryptography. In addition to a multi-cloud storage with Pseudonymized file names to preserve user data privacy on the cloud while minimizing data loss. As well as a hash approach to check data integrity. AES in combination with RSA and fragmenting the file is used for the encryption. Integrity is cheeked using SHA-3. The experiments demonstrated that the key generation stra
... Show MoreSentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discrimina
... Show MoreThe main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256) in our research, compressed them by using MLP for each
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show More