Preferred Language
Articles
/
ijs-9244
Using One-Class SVM with Spam Classification
...Show More Authors

Support Vector Machine (SVM) is supervised machine learning technique which has become a popular technique for e-mail classifiers because its performance improves the accuracy of classification. The proposed method combines gain ratio (GR) which is feature selection method with one-class training SVM to increase the efficiency of the detection process and decrease the cost. The results show high accuracy up to 100% and less error rate with less number of feature to 5 features.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Intrusion Detection System Using Data Stream Classification
...Show More Authors

Secure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Fri Aug 01 2014
Journal Name
International J. Of Math. Sci. & Engg. Appls.
NEUTRAL DELAY DIFFERENTIAL EQUATION WITH ONE LARGE DELAY
...Show More Authors

Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Brain Tumor Detection Method Using Unsupervised Classification Technique
...Show More Authors

Magnetic  Resonance  Imaging  (MRI)  is  one  of  the  most important diagnostic tool. There are many methods to segment the

tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment   the   brain   with   high   precision.   In   this   project,   the unsupervised  classification methods have been used in order to detect the tumor  disease from MRI images.    These metho

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Middle-east Journal Of Scientific Research
Question Classification Using Different Approach: A Whole Review
...Show More Authors

Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-nahrain Journal Of Science
Image Classification Using Bag of Visual Words (BoVW)
...Show More Authors

In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.

View Publication Preview PDF
Crossref (19)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 15 2022
Journal Name
Journal Of Baghdad College Of Dentistry
Compliance of patients with Class III malocclusion to orthodontic treatment
...Show More Authors

Background: Although the new treatment methods developed in recent years are aiming to minimize the need for cooperation of the patients; however, the latter still important factor the treatment. The aim of the study was to evaluate the cooperation level of Class III maloc-clusion patients with orthodontic treatment. Materials and methods: This study followed a cross-sectional style; the targeted population was patients with Class III malocclusion who were treated with three different types of orthopaedic appliances. Four questionnaires were delivered to the patient, patient’s parents, and orthodontists. Statistical analyses of the study were performed with SPSS 20.0 software. Descriptive analyses were presented using fre-quency, percenta

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Intelligent Automation & Soft Computing
A Novel Classification Method with Cubic Spline Interpolation
...Show More Authors

View Publication
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Detection and Classification of The Osteoarthritis in Knee Joint Using Transfer Learning with Convolutional Neural Networks (CNNs)
...Show More Authors

    Osteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA usin

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (3)
Scopus Crossref