we study how to control the dynamics of excitable systems by using the phase control technique.We study how to control nonlinear semiconductor laser dynamics with optoelectronic feedback using the phase control method. The phase control method uses the phase difference between a small.added frequenc y and the main driving frequency to suppress chaos, which leads to various periodic orbits. The experimental studying for the evaluation of chaos modulation behavior are considered in two conditions, the first condition, when one frequency of the external perturbation is varied, secondly, when two of these perturbations are changed. The chaotic system becomes regular under one frequency or two frequencies, But in two frequencies, phase control showed an excellent ability to maintain regular behavior in chaotic window and reexcite chaotic behavior when destroyed. This dynamics of the laser output are analyzed by time series and bifurcation diagram.
Ni2O3 nanomaterial, a phase of nickel oxide, is synthesized by a simple chemical process. The pure raw materials used in the present process were nickel chloride hexahydrate NiCl2.6H2O and potassium hydroxide KOH by utilizing temperature at 250 oC for 2 hour. The structural, morphological and optical properties of the synthesized specimens of Ni2O3 were investigated employing diverse techniques such as XRD, AFM, SEM and UV-Vis, respectively. The XRD technique confirms the presence of Ni2O3 nanomaterial with crystal size of 57.083 nm which indexing to the (2θ) of 31.82; this results revealed the Ni2O3 was a ph
... Show MoreNi2O3 nanomaterial, a phase of nickel oxide, is synthesized by a simple chemical process. The pure raw materials used in the present process were nickel chloride hexahydrate NiCl2.6H2O and potassium hydroxide KOH by utilizing temperature at 250 oC for 2 hour. The structural, morphological and optical properties of the synthesized specimens of Ni2O3 were investigated employing diverse techniques such as XRD, AFM, SEM and UV-Vis, respectively. The XRD technique confirms the presence of Ni2O3 nanomaterial with crystal size of 57.083 nm which indexing to the (2θ) of 31.82; this results revealed the Ni2O3 was a phase of nickel oxide with Nano structure. The synthesized Ni2O3 will be useful in manufacturng electrodes materials f
... Show MoreThe steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreA quantitative description of microstructure governs the characteristics of the material. Various heat and excellent treatments reveal micro-structures when the material is prepared. Depending on the microstructure, mechanical properties like hardness, ductility, strength, toughness, corrosion resistance, etc., also vary. Microstructures are characterized by morphological features like volume fraction of different phases, particle size, etc. Relative volume fractions of the phases must be known to correlate with the mechanical properties. In this work, using image processing techniques, an automated scheme was presented to calculate relative volume fractions of the phases, namely Ferrite, Martensite, and Bainite, present in the
... Show MoreThis valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum
... Show MoreA theoretical calculation of the reorganization energies is demonstrated for semiconductor (TiOâ‚‚, ZnO) and organic dye (safranine T, and coumarin) with a variety solvent such that (water, 1Âpropanol, Formamide, Acetonitrile and Ethanol). The reorganization energy values for dye –semiconductor interface system are large in high polar solvent (water 741 .0 ï¬ , Acetonitrile 708 .0 ï¬ , Ethanol 669 .0 ï¬ ) and small in low polar solvent(1Âpropanol 635 .0 ï¬ . The reorganization energy in safranine T –semiconductor system is larger ( 635 741.0 ï€ )than in coumarin –semiconductor for with the same solvents ( 612
... Show More