Charge extraction layers play a crucial role in developing the performance of the inverted organic solar cells. Using a transparent metal oxide with appropriate work function to the photoactive layer can significantly decrease interface recombination and enhance charge transport mechanism. Therefore, electron selective films that consist of aluminium-doped titanium dioxide (TiO2:Al) with different concentrations of Al (0.4, 0.8, and 1.2)wt % were prepared using sol-gel technique. The inverted organic solar cells PCPDTBT: PCBM with Al doped TiO2 as electron extraction layer were fabricated. It is well known that Al doping concentration potentially affects the physical characteristics of the TiO2 by controlling the optical, morphological, and structural properties. The effect of Al incorporation on the optical and morphological properties of the prepared films were analysed using UV-Vis spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The current–voltage (J-V) curves of the PCPDTBT: PCBM organic solar cells show that the TiO2:Al layer with 0.8% Al wt%, has the highest power conversion efficiency which is 3.02%.
This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.
Many cities suffer from the large spread of slums, especially the cities of the Middle East. The purpose of the paper is to study the reality of informal housing in Al-Barrakia and the most important problems that it suffers from. The paper also seeks to study the presence or absence of a correlation between urban safety indicators and urban containment indicators as one of the methods of developing and planning cities. This can be achieved through sustainable urban management. The slums are a source of many urban problems that threaten the security and safety of the residents and represent a focus for the concentration of crimes and drugs. The paper seeks to answer the following question: How can urban safety be improved through urban cont
... Show MoreThe importance of efficient vehicle detection (VD) is increased with the expansion of road networks and the number of vehicles in the Intelligent Transportation Systems (ITS). This paper proposes a system for detecting vehicles at different weather conditions such as sunny, rainy, cloudy and foggy days. The first step to the proposed system implementation is to determine whether the video’s weather condition is normal or abnormal. The Random Forest (RF) weather condition classification was performed in the video while the features were extracted for the first two frames by using the Gray Level Co-occurrence Matrix (GLCM). In this system, the background subtraction was applied by the mixture of Gaussian 2 (MOG 2) then applying a number
... Show MoreThis paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.
The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems
... Show MoreGestational diabetes mellitus (GDM) is a complication of gestation that is characterized by impaired glucose tolerance with first recognition during gestation. It develops when ?- cell of pancreas fail to compensate the diminished insulin sensitivity during gestation. This study aims to investigate the relationship between mother adiponectin level and ?- cell dysfunction with development gestational diabetes mellitus (GDM) and other parameters in the last trimester of pregnancy. This study includes (80) subjects ( pregnant women) in the third trimester of pregnancy, (40) healthy pregnant individuals as control group aged between (17 - 42) years and (40) gestational diabetes mellitus patients with aged between (20 - 42) years. The f
... Show MoreIn this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .