Serious gases have been highly related to being prejudiced against human life within the environment. The evolution of a trustworthy gas sensor with an elevated response is of major importance for detecting various hazardous gases. Titanium dioxide (TiO2) nanotubes (TNTs) are favorable candidates with considerable potential and stellar performance in gas sensor applications. In this work, we have studied the effect of voltage on preparing TiO2 nanotubular arrays via the anodization technique for gas sensor applications. A simple electrochemical anodization approach was used to synthesize titanium dioxide nanotubes. Diverse techniques of characterization were used to evaluate TNTs. The results gained from field emission scanning electron microscopy (FESEM), energy dispersion spectroscopy (EDS), and X-ray diffraction (XRD) indicate that TiO2 was formed. Gas sensors were created, and the gas detection characteristics were directed towards hydrogen sulfide (H2S), which is not a healthy gas. The sensor made from these nanotubes responds well to this gas at different temperatures and has high sensitivity. The H2S-detecting characteristics were evaluated at values ranging from room temperature up to 300 oC. Results show that the gas sensor TNTs that was prepared at 30 volt for H2S gas sensing has the highest sensitivity and shortest response time at room temperature.
In this paper, two types of iron oxide nanomaterial (Fe3O4) and nanocomposite (T-Fe3O4) were created from the bio-waste mass of tangerine peel. These two materials were utilized for adsorption tests to remove cefixime (CFX) from an aqueous solution. Before the adsorption application, both adsorbents have been characterized by various characterizations such as XRD, FTIR, VSM, TEM, and FESEM. The mesoporous nano-crystalline structure of Fe3O4 and T-Fe3O4 nanocomposite with less than 100-nm diameter is confirmed. The adsorption of the obtained adsorbents was evaluated for CFX removal by adjusting several operation parameters to optimize the removal. The optimal conditions for CFX removal were found to be an initial concentration of 40 and 50 m
... Show MoreBackground: Wound healing is a complex dynamical interaction between various cell types, the extracellular matrix, cytokines, and growth factors. osteoponetin is a substance that acts as an anti-inflammatory. Aims of study: The study was designed to identify the role of local exogenous applications of osteopontin on wound healing (in cheek skin). Materials and methods: Thirty adult male albino rats weighting an average of (250-300gm) used in this study, incisional wounds were made in the skin of the cheek of rat and they were divided into the following groups: A-Control group: 15 rats treated with 1µ l of normal saline B-Experimental groups: 15 rats treated with topical application of 1µl osteopontin. The scarification of animals we
... Show MoreIn this work, study the optical properties of composites consisting of poly Methyl Methacrylate and Berry Paper Mulberry. The samples of composites were prepared using casting method .The Berry Paper Mulberry (BPM) was added by different concentrations are (0, 2, 4 and 6)wt.%. The optical properties of composites have been studied in the wavelength range (200-800)nm. The absorption coefficient ,energy gap, refractive index, extinction coefficient and dielectric constants have been determined. The results show that the optical constants change with increase of BPM concentrations .
This work involves the development of ceramic coating to steel surfaces (enamel).This enamel high quality consisted of two ceramic layers to ensure excellent bonding with the steel surfaces. The first is called the ground coat which proved bonding between the steel base and the second outer layer called the cover coat. Various concentrations of TiO2 were separately added to the mixture of the cover coat, resulting in to much better densification of the ceramic outer layer, the hardness, thermal shock resistances, and glossiness were improved also .Moreover this addition has raised the corrosion resistances of the ceramic in harsh acidic environment and at higher temperatures Also this enamel was used to protect the surfaces of steels whi
... Show MoreBackground: The restoration of bone continuity and bone union are complex processes, and their success is determined by the effectiveness of osteosynthesis. The use of plants for healing purposes predates human history and forms the source of current modern medicine The aim of this study: It was histological evaluation of effect of topical application of flavonoid on healing of induced bone defect in rabbit tibia. Material and method: Twenty-four Adult New Zealand rabbits used in this study, they were divided into four groups for the healing periods (3days, 1,2, and 4weeks) Two holes were induced in rabbit tibia one on the left side and has been left to heal normally as control. While, the other hole made on the right side filled with flavo
... Show MoreThe hydatid materials were collected and studied, so they were contained 50 fertile human hydatid cases {33 (66%) females and 17 (34%) males}. They were collected from Al-Ramadi General Hospital during the period from December, 2003 to July, 2004 .Cysts were observed in 40 (80%) from the liver, 5 (10%) from the lungs, 3 (6%) from the kidney and 2 (4%) cysts from urinary bladder. The specimens were taken from patients of different ages. The in vitro viability of protoscoleces was assessed on the basis of flame cell activity and eosein exclusion, which were considered as criteria to determine the death or viability of protoscoleces. In addition to this movement (flame cell activity), another motility like constriction – relaxatio
... Show MoreIn the present work, asphaltenes and resins separated from emulsion samples collected from two Iraqi oil wells, Nafut Kana (Nk) and Basrah were used to study the emulsion stability. The effect of oil resins to asphaltene (R/A) ratio, pH of the aqueous phase, addition of paraffinic solvent (n-heptane), aromatic solvent (toluene), and blend of both (heptol) in various proportions on the stability of emulsions had been investigated. The conditions of experiments were specified as an agitation speed of 1000 rpm for 30 minutes, heating at 50 °C, and water content of 30%. The results showed that as the R/A ratio increases, the emulsion will be unstable and the amount of water separated from emulsion increases. It was noticed that the em
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreThis study was carried out to investigate the effect of dietary supplementation with different levels of parsley on semen quality of local Iraqi ganders. A total of thirty-two local ganders were used in this study during the period from the beginning of February to the end of April. The ganders were allocated for 4 treatment groups containing 8 ganders each. The treatment groups were as follows: Control diet (free from parsley); T1: Control diet + 80 g/d parsley; T2: Control diet + 160 g/d parsley; T3: Control diet + 240 g/d parsley. Semen samples were collected twice a week, fortnightly, from each gander by the dorsal-abdominal message method. The first semen collection was used to evaluate semen volume, sperm concentration, live in total
... Show More