Preferred Language
Articles
/
ijs-8969
SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines
...Show More Authors

     With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper,  presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI benchmark dataset was used. The proposed model produced recall, precision, F-measure, and accuracy values of 98.7%, 93.3%, 95.9%, and 98.2%, respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations
...Show More Authors

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Sat May 09 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
The Role of Human Resources Strategic Management on Enhancing Talent Success Factors; Exploratory analytical research in the General Authority for Tourism
...Show More Authors

The research aims to verify the role of the Human Resources Strategic Management (HRSM) in enhancing the strategic success factors for talent (SSFT) in the General Tourism Authority by distributing a questionnaire consisting of (36) paragraphs on an intentional sample represented by the higher departments as it reached (50) and the sample valid for testing was (44) Person and to test the relationships between the two research variables, the researchers used statistical methods represented by (Bartlett test / mean / simple regression coefficient / difference coefficient, alpha- cronbachAch, confirmatory factor Analysis ) through the statistical program (SPSS v.23 & AMOS v.23). In enhancing the factors of success for talent management in the

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
Boosting E-learner’s Motivation through Identifying his/her Emotional States
...Show More Authors

The main objective of e-learning platforms is to offer a high quality instructing, training and educational services. This purpose would never be achieved without taking the students' motivation into consideration. Examining the voice, we can decide the emotional states of the learners after we apply the famous theory of psychologist SDT (Self Determination Theory). This article will investigate certain difficulties and challenges which face e-learner: the problem of leaving their courses and the student's isolation.
Utilizing Gussian blending model (GMM) so as to tackle and to solve the problems of classification, we can determine the learning abnormal status for e-learner. Our framework is going to increase the students’ moti

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Editorial: Current advances in anti-infective strategies
...Show More Authors

Infectious diseases pose a global challenge, necessitating an exploration of novel methodologies for diagnostics and treatments. Since the onset of the most recent pandemic, COVID-19, which was initially identified as a worldwide health crisis, numerous countries experienced profound disruptions in their healthcare systems. To combat the spread of the COVID-19 pandemic, governments across the globe have mobilized significant efforts and resources to develop treatments and vaccines. Researchers have put forth a multitude of approaches for COVID-19 detection, treatment protocols, and vaccine development, including groundbreaking mRNA technology, among others.

This matter represents not only a scientific endeavor but also an essenti

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Attention Mechanism Based on a Pre-trained Model for Improving Arabic Fake News Predictions
...Show More Authors

     Social media and news agencies are major sources for tracking news and events. With these sources' massive amounts of data, it is easy to spread false or misleading information. Given the great dangers of fake news to societies, previous studies have given great attention to detecting it and limiting its impact. As such, this work aims to use modern deep learning techniques to detect Arabic fake news. In the proposed system, the attention model is adapted with bidirectional long-short-term memory (Bi-LSTM) to identify the most informative words in the sentence. Then, a multi-layer perceptron (MLP) is applied to classify news articles as fake or real. The experiments are conducted on a newly launched Arabic dataset called the Ara

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Two Machine Flow Shop Scheduling Problem to Minimize the Total Earliness
...Show More Authors

This paper proposes a new algorithm (F2SE) and algorithm (Alg(n – 1)) for solving the
two-machine flow shop problem with the objective of minimizing total earliness. This
complexity result leads us to use an enumeration solution approach for the algorithm (F2SE)
and (DM) is more effective than algorithm Alg( n – 1) to obtain approximate solution.

View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Discharge Coefficient of Contracted Rectangular Sharp-Crested Weirs, an Experimental Study
...Show More Authors

An experimental study is made here to investigate the discharge coefficient for contracted rectangular Sharp crested weirs. Three Models are used, each with different weir width to flume width ratios (0.333, 0.5, and 0.666). The experimental work is conducted in a standard flume with high-precision head and flow measuring devices. Results are used to find a dimensionless equation for the discharge coefficient variation with geometrical, flow, and fluid properties. These are the ratio of the total head to the weir height, the ratio of the contracted weir width to the flume width, the ratio of the total head to the contracted width, and Reynolds and Weber numbers. Results show that the relationship between the discharge co

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
New Generalizations for Ϻ-Hyponormal Operators
...Show More Authors

     This article contains a new generalizations of Ϻ-hyponormal operators which is namely (Ϻ,θ)-hyponormal operator define on Hilbert space H.  Furthermore, we investigate some properties of this concept such as the product and sum of two (Ϻ, θ)-hyponormal operators, At the end the operator equation  where  ,  has been used for getting several characterization of (Ϻ,θ)-hyponormal operators.  

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Solvability for Optimal Classical Continuous Control Problem Controlling by Quaternary Hyperbolic Boundary Value Problem
...Show More Authors

    This work is concerned with studying the solvability for optimal classical continuous control quaternary vector problem that controls by quaternary linear hyperbolic boundary value problem. The existence of the unique quaternary state vector solution for the quaternary linear hyperbolic boundary value problem  is studied and demonstrated by employing the method of Galerkin, where the classical continuous control quaternary vector  is Known. Also, the existence theorem of an optimal classical continuous control quaternary vector related to the quaternary linear hyperbolic boundary value problem is demonstrated. The existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value problem a

... Show More
View Publication Preview PDF
Scopus Crossref