Preferred Language
Articles
/
ijs-8969
SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines
...Show More Authors

     With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper,  presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI benchmark dataset was used. The proposed model produced recall, precision, F-measure, and accuracy values of 98.7%, 93.3%, 95.9%, and 98.2%, respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
ESTIMATION OF COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES WITH APPLICATIONS
...Show More Authors

In this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme  value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS  & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimate Kernel Ridge Regression Function in Multiple Regression
...Show More Authors

             In general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models  precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Annals Of Pure And Applied Mathematics
Linear Regression Model Using Bayesian Approach for Iraqi Unemployment Rate
...Show More Authors

In this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
USE OF MODIFIED MAXIMUM LIKELIHOOD METHOD TO ESTIMATE PARAMETERS OF THE MULTIPLE LINEAR REGRESSION MODEL
...Show More Authors

Scopus
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Quadratic Form Ratio Multiple Test to Estimate Linear Regression Model Parameters in Big Data with Application: Child Labor in Iraq
...Show More Authors

              The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances.  From the diversity of Big Data variables comes many challenges that  can be interesting to the  researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Robust estimation of multiple linear regression parameters in the presence of a problem of heterogeneity of variance and outliers values
...Show More Authors

Often times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Using One-Class SVM with Spam Classification
...Show More Authors

Support Vector Machine (SVM) is supervised machine learning technique which has become a popular technique for e-mail classifiers because its performance improves the accuracy of classification. The proposed method combines gain ratio (GR) which is feature selection method with one-class training SVM to increase the efficiency of the detection process and decrease the cost. The results show high accuracy up to 100% and less error rate with less number of feature to 5 features.

View Publication Preview PDF
Publication Date
Thu Jul 21 2022
Journal Name
Energies
Dynamic Characteristics and Demonstration of an Integrated Linear Engine Generator with Alternative Electrical Machines
...Show More Authors

A linear engine generator with a compact double-acting free piston mechanism allows for full integration of the combustion engine and generator, which provides an alternative chemical-to-electrical energy converter with a higher volumetric power density for the electrification of automobiles, trains, and ships. This paper aims to analyse the performance of the integrated engine with alternative permanent magnet linear tubular electrical machine topologies using a coupled dynamic model in Siemens Simcenter software. Two types of alternative generator configurations are compared, namely long translator-short stator and short translator-long stator linear machines. The dynamic models of the linear engine and linear generator, validated

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon May 20 2019
Journal Name
The Journal Of Engineering
Experimental comparison of two linear machines developed for the free piston engine
...Show More Authors

: In this study, a linear synchronous machine is compared with a linear transverse flux machine. Both machines have been designed and built with the intention of being used as the power take off in a free piston engine. As both topologies are cylindrical, it is not possible to construct either using just flat laminations and so alternative methods are described and demonstrated. Despite the difference in topology and specification, the machines are compared on a common base in terms of rated force and suitability for use as a generator. Experience gained during the manufacture of two prototypes is described.

View Publication Preview PDF
Crossref (9)
Clarivate Crossref