Solving problems via artificial intelligence techniques has widely prevailed in different aspects. Implementing artificial intelligence optimization algorithms for NP-hard problems is still challenging. In this manuscript, we work on implementing the Naked Mole-Rat Algorithm (NMRA) to solve the n-queens problems and overcome the challenge of applying NMRA to a discrete space set. An improvement of NMRA is applied using the aspect of local search in the Variable Neighborhood Search algorithm (VNS) with 2-opt and 3-opt. Introducing the Naked Mole Rat algorithm based on variable neighborhood search (NMRAVNS) to solve N-queens problems with different sizes. Finding the best solution or set of solutions within a plausible amount of time is the main goal of the NMRAVNS algorithm. The improvement of the proposed algorithm boosts the exploitation capability of the basic NMRA and gives a greater possibility, with the emerging search strategies, to find the global best solution. This algorithm proved successful and outperformed other algorithms and studies with a remarkable target. A detailed comparison is performed, and the data results are presented with the relevant numbers and values. NMRA and NMRAVNS comparisons are implemented and recorded. Later on, a comparison between the Meerkat Clan Algorithm, Genetic Algorithm, Particle Swarm Optimization, and NMRAVNS is tested and presented. Finally, NMRAVNS is evaluated against the examined genetic-based algorithm and listed to prove the success of the proposed algorithm. NMRAVNS outperformed previous findings and scored competitive results with a high number of queen sizes, where an average time reduction reached about 87% of other previous findings.
Nowadays, information systems constitute a crucial part of organizations; by losing security, these organizations will lose plenty of competitive advantages as well. The core point of information security (InfoSecu) is risk management. There are a great deal of research works and standards in security risk management (ISRM) including NIST 800-30 and ISO/IEC 27005. However, only few works of research focus on InfoSecu risk reduction, while the standards explain general principles and guidelines. They do not provide any implementation details regarding ISRM; as such reducing the InfoSecu risks in uncertain environments is painstaking. Thus, this paper applied a genetic algorithm (GA) for InfoSecu risk reduction in uncertainty. Finally, the ef
... Show MoreIn this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from
... Show MoreLandsat7 of Enhanced thematic mapper plus (ETM+) was launched on April 15, 1999. Four years later, images start degrading due to the scan line corrector (SLC). SLC is a malfunction that results in pixel gaps in images captured by the sensor of Landsat7. The pixel gap regions extend from about one pixel near the image center and reach up to about 14 pixels in width near the image edge. The shape of this loss is like a zigzag line; however, there are different studies about repairing these gaps. The challenge of all studies depends on retrieving inhomogeneous areas because the homogenous area can be retrieved quickly depending on the surrounding area. This research focuses on filling these gaps by utilizing pixels around them
... Show MoreIn recent years, the rapid development in the field of wireless technologies led to the appearance of a new topic, known as the Internet of things (IoT). The IoT applications can be found in various fields of our life, such as smart home, health care, smart building, and etc. In all these applications, the data collected from the real world are transmitted through the Internet; therefore, these data have become a target of many attacks and hackers. Hence, a secure communication must be provided to protect the transmitted data from unauthorized access. This paper focuses on designing a secure IoT system to protect the sensing data. In this system, the security is provided by the use of Lightweight AES encryption algorithm to encrypt the d
... Show Morein this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.
This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show MoreAchieving energy-efficient Wireless Sensor Network (WSN) that monitors all targets at
all times is an essential challenge facing many large-scale surveillance applications.Singleobjective
set cover problem (SCP) is a well-known NP-hard optimization problem used to
set a minimum set of active sensors that efficiently cover all the targeted area. Realizing
that designing energy-efficient WSN and providing reliable coverage are in conflict with
each other, a multi-objective optimization tool is a strong choice for providing a set of
approximate Pareto optimal solutions (i.e., Pareto Front) that come up with tradeoff
between these two objectives. Thus, in the context of WSNs design problem, our main
contribution is to
The research depth and dimensions of the problem of environmental pollution resulting from the combustion of fuel used in electric power generators, especially in the summer and you are the national electric power supplied by almost non-existent state where this problem is a local phenomenon that has serious dimensions to human health, as well as the possibility of using a the tax system tools of b (environmental taxes) to reduce these pollutants, so the search is aimed at the types of gases emitted from burning fuel electric generators operating in the province of Baghdad and then measure the amount of environmental pollution as well as compared to the amount of some of these gases, which is more risk to humans with permitted by the Wor
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show More