In education, exams are used to asses students’ acquired knowledge; however, the manual assessment of exams consumes a lot of teachers’ time and effort. In addition, educational institutions recently leaned toward distance education and e-learning due the Coronavirus pandemic. Thus, they needed to conduct exams electronically, which requires an automated assessment system. Although it is easy to develop an automated assessment system for objective questions. However, subjective questions require answers comprised of free text and are harder to automatically assess since grading them needs to semantically compare the students’ answers with the correct ones. In this paper, we present an automatic short answer grading method by measuring the semantic similarity between the students answer and the correct answer. A semantic network was built to represent the relationship between the words of the two texts to calculate semantic similarity. Representing a text as a semantic network is the best knowledge representation that comes closest to human comprehension of the text, where the semantic network reflects the sentence's semantic, syntactical, and structural knowledge. Several features were extracted from the semantic network and used as input to train the support vector machine (SVM) model to predict the degree of the targeted semantic similarity. The proposed method was tested on the Mohler dataset that is publicly available online. The obtained results were evaluated and reported in terms of Pearson correlation and root mean squared error (RMSE) where it achieved 0.63 and 0.83 respectively. The proposed method outperformed all previous methods on the used dataset.
A new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreSentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.
In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include
... Show MoreThis study introduced the effect of using magnetic abrasive finishing method (MAF) for finishing flat surfaces. The results of experiment allow considering the MAF method as a perspective for finishing flat surfaces, forming optimum physical mechanical properties of surfaces layer, removing the defective layers and decreasing the height of micro irregularities. Study the characteristics which permit judgment parameters of surface quality after MAF method then comparative with grinding
The DEM (Digital elevation model) means that the topography of the earth's surface (such as; Terrain relief and ocean floors), can be described mathematically by elevations as functions of three positions either in geographical coordinates, (Lat. Long. System) or in rectangular coordinates systems (X, Y, Z). Therefore, a DEM is an array number that represents spatial distributions of terrain characteristics. In this paper, the contour lines with different interval of high-resolution digital elevation model (1m) for AL-khamisah, The Qar Government was obtained. The altitudes ranging is between 1 m – 8.5 m, so characterized by varying heights within a small spatial region because it represents in multiple spots with flat surfaces.
This paper examines the change in planning pattern In Lebanon, which relies on vehicles as a semi-single mode of transport, and directing it towards re-shaping the city and introducing concepts of "smooth or flexible" mobility in its schemes; the concept of a "compact city" with an infrastructure based on a flexible mobility culture. Taking into consideration environmental, economical and health risks of the existing model, the paper focuses on the four foundations of the concepts of "city based on culture flexible mobility, "and provides a SWOT analysis to encourage for a shift in the planning methodology.
The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.
Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification f
... Show MoreThe paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be
... Show MoreDeepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show More