Magnetic Resonance Imaging (MRI) is a medical indicative test utilized for taking images of the tissue points of interest of the human body. During image acquisition, MRI images can be damaged by many noise signals such as impulse noise. One reason for this noise may be a sharp or sudden disturbance in the image signal. The removal of impulse noise is one of the real difficulties. As of late, numerous image de-noising methods were produced for removing the impulse noise from images. Comparative analysis of known and modern methods of median filter family is presented in this paper. These filters can be categorized as follows: Standard Median Filter; Adaptive Median Filter; Progressive Switching Median Filter; Noise Adaptive Fuzzy Switching Median Filter; and Different Applied Median Filter. The de-noising technique performance for each one is evaluated and compared using Peak Signal Noise Ratio, Structural Similarity index Metric, and Beta metric as quantitative metrics. The experimental results showed that the latest de-noising technique, Different Applied Median Filter (DAMF), produced better results in removing impulse noise compared with the other de-noising techniques. However, this filter produced de-noised image with nonlinear edges in high-density noise. As a result, noise removal from images is one of the low-level images processing which is considered as a first step in many image applications. Therefore, the efficiency of any image processed depends on the efficiency of noise removal technique.
The Enhanced Thematic Mapper Plus (ETM+) that loaded onboard the Landsat-7 satellite was launched on 15 April 1999. After 4 years, the image collected by this sensor was greatly impacted by the failure of the system’s Scan Line Corrector (SLC), a radiometry error.The median filter is one of the basic building blocks in many image processing situations. Digital images are often distorted by impulse noise due to errors generated by the noise sensor, errors that occur during the conversion of signals from analog-to-digital, as well as errors generated in communication channels. This error inevitably leads to a change in the intensity of some pixels, while some pixels remain unchanged. To remove impulse noise and improve the quality of the
... Show MoreUltrasound imaging is often preferred over other medical imaging modalities because it is non-invasive, non-ionizing, and low-cost. However, the main weakness of medical ultrasound image is the poor quality of images, due to presence of speckle noise and blurring. Speckle is characteristic phenomenon in ultrasound images, which can be described as random multiplicative noise that occurrence is often undesirable, since it affects the tasks of human interpretation and diagnosis. Blurring is a form of bandwidth reduction of an ideal image owing to the imperfect image formation process. Image denoising involves processing of the image data to produce a visually high quality image. The denoising algorithms may be classified into two categorie
... Show MoreDigital image started to including in various fields like, physics science, computer science, engineering science, chemistry science, biology science and medication science, to get from it some important information. But any images acquired by optical or electronic means is likely to be degraded by the sensing environment. In this paper, we will study and derive Iterative Tikhonov-Miller filter and Wiener filter by using criterion function. Then use the filters to restore the degraded image and show the Iterative Tikhonov-Miller filter has better performance when increasing the number of iteration To a certain limit then, the performs will be decrease. The performance of Iterative Tikhonov-Miller filter has better performance for less de
... Show MoreBackground: Since its introduction to musculoskeletal imaging in the early 1980, magnetic resonance imaging (MRI) has revolutionized diagnostic imaging of the knee. It is therefore become the examination of choice in the evaluation of internal joint structures of the knee like menisci, cruciate ligaments, and articular cartilage.Objectives: to describe the MRI finding in various knee injuries.Patients and methods: A cross sectional study was done on 130 patients with history of knee injury in MRI unit at institute of radiology and al-Shaheed Ghazi Al-Hariri Hospital in medical city complex - Baghdad, from October 2011 to February 2013 includes 103 men, 27 women; the mean age was 33.86 years. MR imaging studies of the knee performed using
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
Heart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreThe frequency dependent noise attenuation (FDNAT) filter was applied on 2D seismic data line DE21 in east Diwaniya, south eastern Iraq to improve the signal to noise ratio. After applied FDNAT on the seismic data, it gives good results and caused to remove a lot of random noise. This processing is helpful in enhancement the picking of the signal of the reflectors and therefore the interpretation of data will be easy later. The quality control by using spectrum analysis is used as a quality factor in proving the effects of FDNAT filter to remove the random noise.
The Wiener filter is widely used in image de-noising. It is used to reduce Gaussian noise. Although the Wiener filter removes noise from the image, it causes a loss of edge detail information, resulting in blurring of the image. The edge details are considered high-frequency components. The Wiener filter is unable to reconstruct these components. In this paper, the proposed filter based on the Wiener filter and the high-boost filter for medical images is presented. The proposed filter is applied to the degraded image. First, using Fourier Transformation, the degraded image and the high boost filter are converted in the frequency domain. Secondly, the wiener filter is applied to the image along with the high boost filter. Thirdly
... Show MoreMedical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show More