Ultrasound imaging is often preferred over other medical imaging modalities because it is non-invasive, non-ionizing, and low-cost. However, the main weakness of medical ultrasound image is the poor quality of images, due to presence of speckle noise and blurring. Speckle is characteristic phenomenon in ultrasound images, which can be described as random multiplicative noise that occurrence is often undesirable, since it affects the tasks of human interpretation and diagnosis. Blurring is a form of bandwidth reduction of an ideal image owing to the imperfect image formation process. Image denoising involves processing of the image data to produce a visually high quality image. The denoising algorithms may be classified into two categories, spatial filtering algorithms and transform domain based algorithms. In this work three adaptive filters are used to denoising speckle noise in ultrasonic (B-mode) images based on calculating the Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) value as a metric is presented, then estimated the gestation age from filtered images using MATLAB program, as well as using Wiener filter to restore the degradation images.
Ultrasound imaging has some problems with image properties output. These affects the specialist decision. Ultrasound noise type is the speckle noise which has a grainy pattern depending on the signal. There are two parts of this study. The first part is the enhancing of images with adaptive Weiner, Lee, Gamma and Frost filters with 3x3, 5x5, and 7x7 sliding windows. The evaluated process was achieved using signal to noise ratio (SNR), peak signal to noise ratio (PSNR), mean square error (MSE), and maximum difference (MD) criteria. The second part consists of simulating noise in a standard image (Lina image) by adding different percentage of speckle noise from 0.01 to 0.06. The supervised classification based minimum di
... Show MoreLately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include
... Show MoreThyroid is a small butterfly shaped gland located in the front of the neck just below the Adams apple. Thyroid is one of the endocrine gland, which produces hormones that help the body to control metabolism. A different thyroid disorder includes Hyperthyroidism, Hypothyroidism, and thyroid nodules (benign/malignant). Ultrasound imaging is most commonly used to detect and classify abnormalities of the thyroid gland. Segmentation method is a tool that used widely in many applications including medical image processing. One of the common applications of segmentation is in medical image analysis for clinical diagnosis that has an important role in terms of quality and quantity.
The main objective of this research is to use the Computer-Ai
The conjugate coefficient optimal is the very establishment of a variety of conjugate gradient methods. This paper proposes a new class coefficient of conjugate gradient (CG) methods for impulse noise removal, which is based on the quadratic model. Our proposed method ensures descent independent of the accuracy of the line search and it is globally convergent under some conditions, Numerical experiments are also presented for the impulse noise removal in images.
The most common artifacts in ultrasound (US) imaging are reverberation and comet-tail. These are multiple reflection echoing the interface that causing them, and result in ghost echoes in the ultrasound image. A method to reduce these unwanted artifacts using a Otsu thresholding to find region of interest (reflection echoes) and output applied to median filter to remove noise. The developed method significantly reduced the magnitude of the reverberation and comet-tail artifacts. Support Vector Machine (SVM) algorithm is most suitable for hyperplane differentiate. For that, we use image enhancement, extraction of feature, region of interest, Otsu thresholding, and finally classification image datasets to normal or abnormal image.
... Show MoreUltrasound has been used as a diagnostic modality for many intraocular diseases, due its safety, low cost, real time and wide availability. Unfortunately, ultrasound images suffer from speckle artifact that are tissue dependent. In this work, we will offer a method to reduce speckle noise and improve ultrasound image to raise the human diagnostic performance. This method combined undecimated wavelet transform with a wavelet coefficient mapping function: where UDWT used to eliminate the noise and a wavelet coefficient mapping function used to enhance the contrast of denoised images obtained from the first component. This methods can be used not only as a means for improving visual quality of medical images but also as a preprocessing
... Show MoreThe aim of this paper is to compare between classical and fuzzy filters for removing different types of noise in gray scale images. The processing used consists of three steps. First, different types of noise are added to the original image to produce a noisy image (with different noise ratios). Second, classical and fuzzy filters are used to filter the noisy image. Finally, comparing between resulting images depending on a quantitative measure called Peak Signal-to-Noise Ratio (PSNR) to determine the best filter in each case.
The image used in this paper is a 512 * 512 pixel and the size of all filters is a square window of size 3*3. Results indicate that fuzzy filters achieve varying successes in noise reduction in image compared to
Magnetic Resonance Imaging (MRI) is a medical indicative test utilized for taking images of the tissue points of interest of the human body. During image acquisition, MRI images can be damaged by many noise signals such as impulse noise. One reason for this noise may be a sharp or sudden disturbance in the image signal. The removal of impulse noise is one of the real difficulties. As of late, numerous image de-noising methods were produced for removing the impulse noise from images. Comparative analysis of known and modern methods of median filter family is presented in this paper. These filters can be categorized as follows: Standard Median Filter; Adaptive Median Filter; Progressive Switching Median Filter; Noise Adaptive Fuz
... Show More