An α-fractional integral and derivative of real function have been introduced in new definitions and then, they compared with the existing definitions. According to the properties of these definitions, the formulas demonstrate that they are most significant and suitable in fractional integrals and derivatives. The definitions of α-fractional derivative and integral coincide with the existing definitions for the polynomials for 0 ≤ α < 1. Furthermore, if α = 1, the proposed definitions and the usual definition of integer derivative and integral are identical. Some of the properties of the new definitions are discussed and proved, as well, we have introduced some applications in the α- fractional derivatives and integrals. Moreover, α-power series and α–rule of integration by parts have been proposed and implemented in this study.
An environmentally begnin second derivative spectrometric approach was developed for the estimation of the dissociation constants pKa(s) of metformin, a common anti-diabetic drug. The ultraviolet spectra of the aqueous solution of metformin were measured at different acidities, then the second derivative of each spectrum was graphed. The overlaid second derivative graphs exhibited two isobestic points at 225.5 nm and 244 nm pointing out to the presence of two dissociation constants for metformin pKa1 and pKa2, respectively. The method was validated by evaluating the reproducibility of the acquired results by comparing the estimated values of the dissociation constants of two different strategies that show excellent matching. As we
... Show MoreIn this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.
A new spectrophotometric method for individual and simultaneous determination of cefixime and cephalexin depending on the first and second derivative mode techniques. The first and second derivative spectra of these compounds permitted individual and simultaneous determination of cefixime and cephalexin in concentration interval of (4– 24μg.ml-1 ) by measuring the amplitude of peak-to-base line, pea to peak at certain wavelengths and the area under peak at selected spectrum intervals. The methods showed reasonable precision and accuracy and have been applied to determine cefixime and cephalexin in two different pharmaceutical preparations.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
The objective of this work is to study the concept of a fuzzy -cone metric space And some related definitions in space. Also, we discuss some new results of fixed point theorems. Finally, we apply the theory of fixed point achieved in the research on an integral type.
Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreIn this paper we define and study new generalizations of continuous functions namely, -weakly (resp., w-closure, w-strongly) continuous and the main properties are studies: (a) If f : X®Y is w-weakly (resp., w-closure, w-strongly) continuous, then for any AÌX and any BÌY the restrictions fïA : A®Y and fB : f -1(B)®B are w-weakly (resp., w-closure, w-strongly) continuous. (b) Comparison between deferent forms of generalizations of continuous functions. (c) Relationship between compositions of deferent forms of generalizations of continuous functions. Moreover, we expanded the above generalizations and namely almost w-weakly (resp., w-closure, w-strongly) continuous functions and we state and prove several results concerning it.
Continuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established.