Preferred Language
Articles
/
ijs-8379
COVID-19 Detection via Blood Tests using an Automated Machine Learning Tool (Auto-Sklearn)
...Show More Authors

     Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-Sklearn tool. First, an analysis of the Auto-Sklearn process is done by studying the impact of several learning settings and parameters on the COVID-19 dataset using different classification methods, namely meta-learning, ensemble learning, and a combination of ensemble learning and meta-learning. The results show that using Auto-Sklearn with a meta-learning and ensemble learning parameter model predicts the patients infected with COVID-19 with high accuracy, reaching 96%. Furthermore, the best algorithm selected is the Random Forest Classifier (RF), which outperforms other classification methods. Finally, AutoML can assist those new to data sciences or programming skills in selecting the appropriate algorithm and hyperparameters and reducing the number of steps required to achieve the best results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Univariate and Simplex Optimization for The Analysis of Diphenhydramine-HCl Through Ion-pair Formation
...Show More Authors

    A Simple, rapid and sensitive extractive and spectrophotometric method has been described for the analysis of diphenhyldramine –HCl (DPH) in pure form and in pharmaceutical formulations. The method is based on the formation of chloroform soluble ion-pair  complex with Bromophenol blue(BPB) in a phthalate buffer at pH 3.0.The extracted complex shows maximum absorbance at 410 nm. Beer's law is obeyed in the concentration range 0.2-25.0 µg.ml-1. The molar absorptivity and Sandell's sensitivity for the system being  2.416x104 L.mol-1.cm-1 and 0.012µg.cm-2, respectively. The limit of detection was found to be 0.155 µg.ml-1.           The proposed me

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Optimized Kalman filters for sensorless vector control induction motor drives
...Show More Authors

<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, t

... Show More
Crossref (2)
Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Multi-Objective Genetic Algorithm-Based Technique for Achieving Low-Power VLSI Circuit Partition
...Show More Authors

     Minimizing the power consumption of electronic systems is one of the most critical concerns in the design of integrated circuits for very large-scale integration (VLSI). Despite the reality that VLSI design is known for its compact size, low power, low price, excellent dependability, and high functionality, the design stage remains difficult to improve in terms of time and power. Several optimization algorithms have been designed to tackle the present issues in VLSI design. This study discusses a bi-objective optimization technique for circuit partitioning based on a genetic algorithm. The motivation for the proposed research is derived from the basic concept that, if some portions of a circuit's system are deactivated during th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Genetic Algorithm Optimization Model for Central Marches Restoration Flows with Different Water Quality Scenarios
...Show More Authors

A Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Parallel Particle Swarm Optimization Algorithm for Identifying Complex Communities in Biological Networks
...Show More Authors

    Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed to d

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Defence Technology
A novel facial emotion recognition scheme based on graph mining
...Show More Authors

Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T

... Show More
View Publication Preview PDF
Scopus (37)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Formation of Compressive Residual Stress by Face Milling Steel AISI 1045
...Show More Authors

Abstract

     Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Diversity Operators-based Artificial Fish Swarm Algorithm to Solve Flexible Job Shop Scheduling Problem
...Show More Authors

Artificial fish swarm algorithm (AFSA) is one of the critical swarm intelligent algorithms. In this
paper, the authors decide to enhance AFSA via diversity operators (AFSA-DO). The diversity operators will
be producing more diverse solutions for AFSA to obtain reasonable resolutions. AFSA-DO has been used to
solve flexible job shop scheduling problems (FJSSP). However, the FJSSP is a significant problem in the
domain of optimization and operation research. Several research papers dealt with methods of solving this
issue, including forms of intelligence of the swarms. In this paper, a set of FJSSP target samples are tested
employing the improved algorithm to confirm its effectiveness and evaluate its ex

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Doubly Type II Censoring of Two Stress-Strength System Reliability Estimation for Generalized Exponential-Poisson Distribution
...Show More Authors

 In this paper, a Bayesian analysis is made to estimate the Reliability of two stress-strength model systems. First: the reliability  of a one component strengths X under stress Y. Second, reliability  of one component strength under three stresses. Where X and Y are independent generalized exponential-Poison random variables with parameters (α,λ,θ) and (β,λ,θ) . The analysis is concerned with and based on doubly type II censored samples using gamma prior under four different loss functions, namely   quadratic loss function, weighted loss functions,  linear and non-linear exponential loss function. The estimators are compared by mean squared error criteria due to a simulation study. We also find that the mean square error is

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Optimized Zero and First Order Design of Micro Geodetic Networks
...Show More Authors

Precision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie

... Show More
View Publication Preview PDF
Crossref (3)
Crossref