Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-Sklearn tool. First, an analysis of the Auto-Sklearn process is done by studying the impact of several learning settings and parameters on the COVID-19 dataset using different classification methods, namely meta-learning, ensemble learning, and a combination of ensemble learning and meta-learning. The results show that using Auto-Sklearn with a meta-learning and ensemble learning parameter model predicts the patients infected with COVID-19 with high accuracy, reaching 96%. Furthermore, the best algorithm selected is the Random Forest Classifier (RF), which outperforms other classification methods. Finally, AutoML can assist those new to data sciences or programming skills in selecting the appropriate algorithm and hyperparameters and reducing the number of steps required to achieve the best results.
Surface Plasmon Resonance (SPR)-based plastic optical fiber sensor for estimating the concentration and refractive index of sugar in human blood serum. The sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal. The blood serum is placed on gold coated core of an Optical grade plastic optical fiber of 980 µm core diameter.
The literature shows conflicting outcomes, making it difficult to determine how e-learning affects the performance of students in higher education. The effect of e-learning was studied and data has been gathered with the utilization of a variety of qualitative and quantitative methods, especially in relation to students' academic achievements and perceptions in higher education, according to literature review that has been drawn from articles published in the past two decades (2000-2020). The development of a sense of community in the on-line environment has been identified to be one of the main difficulties in e-learning education across this whole review. In order to create an efficient online learning community, it could be claim
... Show MoreE-learning seeks to create an interactive learning environment between the teacher and the learner through electronic media conveying in more than one direction, regardless of how the environment and its variables are identified. It also develops skills necessary to deal with technology in order to be able to take into account the individual differences between them and helps e-learning teacher and learner to achieve the goals set in advance and identify educational objectives in a clear manner. The research aims to identify e-learning in its benefits and management systems. It has three sections dealt with in the current research. Chapter II concentrates on the research Methodology, which consisted of three sections: The first s
... Show MoreA novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)
Five serological methods for detection of Brucella were compaired in this study, Four of the methods are commonely used in the detections:- 1-Rose-Bengal: as primary screening test which depends on detecting antibodies in the blood serum. 2-IFAT: which detects IgG and IgM antibodies in the serum. 3-ELISA test: which detects IgG antibodies in the serum. 4-2ME test: which detects IgG antibodies The fifth methods. It was developed by a reasercher in one of the health centers in Baghdad. It was given the name of spot Immune Assay (SIA). Results declares that among (100) samples of patients blood, 76, 49, 49, 37, and 28. samples were positive to Rose Bengal, ELISA, SIA, 2ME and IFAT tests, respectively. When efficiency, sensitivity and specific
... Show MoreThe study deals with an analysis of the contents of the publications of the campaign (Together to defeat Corona), which was established by the United Nations Development Program in Iraq in the face of the Covid 19 virus.The research problem raises a main question:What are the implications of the campaign (Together to defeat Corona) of the United Nations Development Program (Iraq office) in addressing the Covid-19 virus in Iraq?From this main question, several sub-questions emerged, which were answered by this study in its chapters and investigations, including regarding the contents of advertisements, photos and videos for the publications of the (Together to Defeat Corona) campaign for the United Nations Iraq Office on their Facebook pageA
... Show MoreData hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show MoreE-Learning packages are content and instructional methods delivered on a computer
(whether on the Internet, or an intranet), and designed to build knowledge and skills related to
individual or organizational goals. This definition addresses: The what: Training delivered
in digital form. The how: By content and instructional methods, to help learn the content.
The why: Improve organizational performance by building job-relevant knowledge and
skills in workers.
This paper has been designed and implemented a learning package for Prolog Programming
Language. This is done by using Visual Basic.Net programming language 2010 in
conjunction with the Microsoft Office Access 2007. Also this package introduces several
fac