Preferred Language
Articles
/
ijs-8379
COVID-19 Detection via Blood Tests using an Automated Machine Learning Tool (Auto-Sklearn)
...Show More Authors

     Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-Sklearn tool. First, an analysis of the Auto-Sklearn process is done by studying the impact of several learning settings and parameters on the COVID-19 dataset using different classification methods, namely meta-learning, ensemble learning, and a combination of ensemble learning and meta-learning. The results show that using Auto-Sklearn with a meta-learning and ensemble learning parameter model predicts the patients infected with COVID-19 with high accuracy, reaching 96%. Furthermore, the best algorithm selected is the Random Forest Classifier (RF), which outperforms other classification methods. Finally, AutoML can assist those new to data sciences or programming skills in selecting the appropriate algorithm and hyperparameters and reducing the number of steps required to achieve the best results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Forest Change Detection in Mosul Province using RS and GIS Techniques
...Show More Authors

    There are many events that took place in Al Mosul province between 2013 and 2018. These events led to many changes in the area under study. These changes involved a decrease in agricultural crops and water due to the population leaving the area. Therefore, it is imperative that planners, decision-makers, and development officials intervene in order to restore the region's activity in terms of environment and agriculture. The aim of this research is to use remote sensing (RS) technique and geographic information system (GIS) to detect the change that occurred in the mentioned period. This was achieved through the use of the ArcGIS software package for the purpose of assessing the state of lands of agricultural crops and

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu

... Show More
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Wed Sep 11 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Automated Reconstruction and Manual Curation of Amino Acid Biosynthesis Pathways in Sulfolobus solfataricus P2
...Show More Authors

The efficient sequencing techniques have significantly increased the number of genomes that are now available, including the Crenarchaeon Sulfolobus solfataricus P2 genome. The genome-scale metabolic pathways in Sulfolobus solfataricus P2 were predicted by implementing the “Pathway Tools” software using MetaCyc database as reference knowledge base. A Pathway/Genome Data Base (PGDB) specific for Sulfolobus solfataricus P2 was created. A curation approach was carried out regarding all the amino acids biosynthetic pathways. Experimental literatures as well as homology-, orthology- and context-based protein function prediction methods were followed for the curation process. The “PathoLogic”

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Nov 07 2020
Journal Name
Journal Of Advanced Research In Fluid Mechanics And Thermal Sciences
Fully Automated Measurement Setup for Photovoltaic Panel Performance Evaluation and Testing under LabVIEW Platform
...Show More Authors

Photovoltaic (PV) devices are widely used renewable energy resources and have been increasingly manufactured by many firms and trademarks. This condition makes the selection of right product difficult and requires the development of a fast, accurate and easy setup that can be implemented to test available samples and select the cost effective, efficient, and reliable product for implementation. An automated test setup for PV panels using LabVIEW and several microcontroller-based embedded systems were designed, tested, and implemented. This PV testing system was fully automated, where the only human intervention required was the instalment of PV panel and set up of required testing conditions. The designed and implemented system was

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Dec 15 2021
Journal Name
Al-academy
The communicative education of fine arts in the COVID-19 crisis and its manifestations in the modernization of the works of the Iraqi painter "Nabil Ali as a model"
...Show More Authors

 This study attempts to address the importance of communicative digitization in the field of various arts for the sake of continuity of shopping and aesthetic, artistic and intellectual appreciation of artistic achievements by the recipient on various places of their residence in light of the COVID 19 crisis, and to highlight the importance of the plastic arts of the Iraqi painter exclusively and how it expresses in a contemporary way the environment or life reality in Iraq in light of this crisis. With all its implications affecting the life reality from various aspects and methods of its negative and positive employment. As for the research procedures, the researcher reviewed the research methodology represented by the descriptive ana

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 21 2024
Journal Name
Cureus
The Effect of Maternal Blood Glucose on Umbilical Cord Blood Fibrinogen in Women With Gestational Diabetes
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Wed Dec 30 2015
Journal Name
Al-kindy College Medical Journal
Possibility of glucose level assessment using the blood of gingival probing and dental socket after tooth extraction
...Show More Authors

Background: The association between diabetes and inflammatory dental diseases had been studied extensively for more than 50 years. A large evidence base suggests that diabetes is associated with an increased prevalence, extent and severity of gingivitis and periodontitis and loss of teeth. Many patients do not aware that they are diabetic.Objectives:The aim of the current study was to assess a fast, non-invasive, safe procedure to screen for diabetes and its severity in dental clinics and to assess the change in blood glucose level before and after tooth extraction during periodontalResults: there were no significant differences between the blood samples collected before tooth extraction from finger puncture method (FPB) and the gingival

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 17 2021
Journal Name
Revista Iberoamericana De PsicologÍa Del Ejercicio Y El Deporte
THE EFFECT OF USING THE ELECTRONIC PARTICIPATORY LEARNING STRATEGY ACCORDING TO THE WEB PROGRAMS IN LEARNING SOME BASIC SKILLS OF BASKETBALL FOR FIRST-GRADE INTERMEDIATE SCHOOL STUDENTS ACCORDING TO THE CURRICULAR COURSE
...Show More Authors

The research aims to identify the impact of using the electronic participatory learning strategy according to internet programs in learning some basic basketball skills for middle first graders according to the curricular course, and the sample of research was selected in the deliberate way of students The first stage of intermediate school.As for the problem of research, the researchers said that there is a weakness in the levels of school students in terms of teaching basketball skills, which prompted the researchers to create appropriate solutions by using a participatory learning strategy.The researchers imposed statistically significant differences between pre and post-test tests, in favor of the post tests individually and in favor of

... Show More
View Publication