Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-Sklearn tool. First, an analysis of the Auto-Sklearn process is done by studying the impact of several learning settings and parameters on the COVID-19 dataset using different classification methods, namely meta-learning, ensemble learning, and a combination of ensemble learning and meta-learning. The results show that using Auto-Sklearn with a meta-learning and ensemble learning parameter model predicts the patients infected with COVID-19 with high accuracy, reaching 96%. Furthermore, the best algorithm selected is the Random Forest Classifier (RF), which outperforms other classification methods. Finally, AutoML can assist those new to data sciences or programming skills in selecting the appropriate algorithm and hyperparameters and reducing the number of steps required to achieve the best results.
Strong acids were determined via the precipitation reaction of loaded copper (II) ion on strong cation exchange resin which in turn reacts with potassium hyxacyano ferrate (II). The attenuation effect of formed precipitate Cu2 [Fe (CN) 6] on (0 -180o) incident LED light was measurement via homemade AYAH 5SX4-ST-5D solar CFI analyser. Optimum parameters were 0.005M.L-1 [Fe(CN)6]-4 , flow rate of 2.4 mL.min-1 , sample volume 204 μL , sample purge time of 64 seconds was chosen, and 1.6 V for light intensity. A liner calibration graph of 0.005 -0.2 M.L-1 were obtains for HCl, HNO3, HCLO4 and H2SO4, with a linearity (r2 %) 96 -97 % and L.O.D based on gradual dilution of lowest concentration in calibration graph was 37.19 μg for HCl, 64.273
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MorePlagiarism Detection Systems play an important role in revealing instances of a plagiarism act, especially in the educational sector with scientific documents and papers. The idea of plagiarism is that when any content is copied without permission or citation from the author. To detect such activities, it is necessary to have extensive information about plagiarism forms and classes. Thanks to the developed tools and methods it is possible to reveal many types of plagiarism. The development of the Information and Communication Technologies (ICT) and the availability of the online scientific documents lead to the ease of access to these documents. With the availability of many software text editors, plagiarism detections becomes a critical
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreAbstract
This study aims to identify the repercussions of the Corona pandemic (Covid 19) and its impact on the educational and psychological functions of the Omani family from the point of view of a number of fathers and mothers. Drive for a group of fathers and mothers, some of whom work in the government sector and others are mothers enrolled in graduate studies programs at the university, their ages range between (30-50 years) totally (28) mothers and fathers: 22 mothers and 6 fathers. The results showed that the repercussions of the transformation of e-learning, home quarantine, social distancing, and the challenges associated with them were among the most frequent responses that posed a real challenge to the
... Show MoreVaccine hesitancy poses a significant risk to global recovery from COVID-19. To date however, there is little research exploring the psychological factors associated with vaccine acceptability and hesitancy in Iraq.
To explore attitudes towards COVID-19 vaccination in Iraq. To establish the predictors of vaccine uptake and vaccine hesitancy in an Iraqi population.
Using a cross-sectional design, 7,778 participants completed an online questionnaire exploring their vaccination status, likelihood of infection, perc
Coronavirus disease 2019 (COVID-19) is a flu-like infection caused by a novel virus known as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). After the widespread around the world, it was announced by the World Health Organization (WHO) as a global pandemic. The symptoms of COVID-19 may arise within 2 weeks and the severity ranged from mild with signs of respiratory infection to severe cases of organ failure and even death. Management of COVID-19 patients includes supportive treatment and pharmacological medications expected to be effective with no definitive cure of the disease. The aims of this study are highlighting the management protocol and supportive therapy especially vitamin D and manifesting the clinical symptoms b
... Show More