Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-Sklearn tool. First, an analysis of the Auto-Sklearn process is done by studying the impact of several learning settings and parameters on the COVID-19 dataset using different classification methods, namely meta-learning, ensemble learning, and a combination of ensemble learning and meta-learning. The results show that using Auto-Sklearn with a meta-learning and ensemble learning parameter model predicts the patients infected with COVID-19 with high accuracy, reaching 96%. Furthermore, the best algorithm selected is the Random Forest Classifier (RF), which outperforms other classification methods. Finally, AutoML can assist those new to data sciences or programming skills in selecting the appropriate algorithm and hyperparameters and reducing the number of steps required to achieve the best results.
The prevalence of gastrointestinal symptoms of COVID-19 is variable with different types of presentations. Some of them many present with manifestations mimicking surgical emergencies. Yet, the pathophysiology of acute abdomen in the context of COVID-19 remains unclear. We present a case of a previously healthy child who presented with acute appendicitis with multisystemic inflammatory syndrome. We also highlight the necessity of considering the gastrointestinal symptoms of COVID-19 infection in pediatric patients in order to avoid misdiagnosis and further complications. |
This study aimed to evaluate the effect of the COVID-19 outbreak on emergencies and pain among orthodontic patients attending a teaching hospital. The study was conducted among orthodontic patients receiving active orthodontic treatment or in a retention period at the College of Dentistry, University of Baghdad, Iraq. Their participation was voluntary, and they filled out an Arabic-translated questionnaire. The survey included general information, orthodontic problems, and a numerical rating scale for pain assessment. We used descriptive and inferential statistics (frequencies and intersecting frequencies), chi-square test and linear regression. Out of 75 orthodontic patients, only 54 (15 males and 39 females) were included in the s
... Show MoreThis study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appe
SUMMARY. The objectives of the present study were to assess the possible predictors of COVID-19 severity and duration of hospitalization and to identify the possible correlation between patient parameters, disease severity and duration of hospitalization. The study included retrospective medical record extraction of previous coron avirus COVID-19 patients in Basra hospitals, Iraq from March 1st and May 31st, 2020. The information of the participants was investigated anonymously. All the patients’ characteristics, treatments, vital signs and laboratory tests (hematological, renal and liver function tests) were collected. The analysis was conducted using the SPSS (version 22, USA). Spearman correlation was used to measure the relations
... Show MoreDuring infection, T. gondii disseminates by the circulatory system and establishes chronic infection in several organs. Almost third of humans, immunosuppressed individuals such as HIV/AIDS patients, cancer patients, and organ transplant recipients are exposed to toxoplasmosis. Therefore, the study aimed to investigate the possibility that Toxoplasma infection could be a risk factor for COVID-19 patients and its possible correlation with C-reactive protein and ferritin. Overall 220 patients referred to the Al Furat General Hospital, Baghdad, Iraq were enrolled from 2020–2021. All serum samples were tested for T. gondii immunoglobulins (IgG and IgM) antibodies, C-reactive protein and ferritin levels. In patients with COVID-19, the results
... Show MoreBackground: The study was designed for the assessment of the knowledge of medical students regarding pandemics. In the current designed study, the level of awareness was checked and the majority of students were found aware of SARS-CoV and SARS-Cov2 (Covid-19).
Objective: To assess the awareness of SARS-CoV and SARS-Cov2 (Covid-19) among medical students of Pakistan.
Subjects and Methods: A cross-sectional survey was carried out in different universities of Pakistan from May to August 2020. A self-constructed questionnaire by Pursuing the clinical and community administration of COVID-19 given by the National Health Commission of the People's Republic of China was used am
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreDiesel generators are used in various locations throughout Baghdad city, central Iraq, when the public electricity power is in outage. The main purpose of the current research is to investigate possible changes in certain biochemical parameters in the blood of operators of diesel generators in different locations Baghdad city, at both Rusafa and Karkh sides. The workers were divided according to the number of working years.
Serum urea, creatinine, alkaline phosphatase (AlP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total serum bilirubin (TSB), and glomerular filtration rate (GFR) were analyzed in samples from forty wo
... Show MoreThe current research aimed to identify the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis. It also aims to identify the recovery and resuming plan to the business environment. The research followed the descriptive survey to find out the views of 34 internal auditors at various functional levels in the Kingdom of Saudi Arabia. Spreadsheets (Excel) were used to analyze the data collected by a questionnaire which composed of 43 statements, covering the tasks that the internal auditors can perform to face the COVID-19 crisis. Results revealed that the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis is to en
... Show More