In this paper, a general expression formula for the Boubaker scaling (BS) operational matrix of the derivative is constructed. Then it is used to study a new parameterization direct technique for treating calculus of the variation problems approximately. The calculus of variation problems describe several important phenomena in mathematical science. The first step in our suggested method is to express the unknown variables in terms of Boubaker scaling basis functions with unknown coefficients. Secondly, the operational matrix of the derivative together with some important properties of the BS are utilized to achieve a non-linear programming problem in terms of the unknown coefficients. Finally, the unknown parameters are obtained using the quadratic programming technique. Some numerical examples are included to confirm the accuracy and applicability of the suggested direct parameterization method.
In our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo
... Show MoreThe aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.
In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
The aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo
... Show MoreHome Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad
... Show MoreThis research aims to know the essence of the correlative relationship between tactical thinking and solving mathematical problems. The researchers followed the descriptive research method to analyze relations, as all students from the mathematics department in the morning study were part of the research group. The research sample of (100) male and female students has been chosen based on the arbitrators' views. The tools for studying the sample of research composed of (12) items of the multiple-choice test in its final form to measure tactical thinking and require establish-ing a test of (6) test-type paragraphs to solve mathematical problems. The findings showed that sample students' tactical thinking and their capacity to overcome mathem
... Show MoreMany of the elementary transformations of determinants which are used in their evaluation and in the solution of linear equations may by expressed in the notation of matrices. In this paper, some new interesting formulas of special matrices are introduced and proved that the determinants of these special matrices have the values zero. All formulation has been coded in MATLAB 7.
Organic permeable‐base transistors (OPBTs) show potential for high‐speed, flexible electronics. Scaling laws of OPBTs are discussed and it is shown that OPBT performance can be increased by reducing their effective device area. Comparing the performance of optimized OPBTs with state‐of‐the‐art organic field‐effect transistors (OFETs), it is shown that OPBTs have a higher potential for an increased transit frequency. Not only do OPBTs reach higher transconductance values without the need for sophisticated structuring techniques, but they are also less sensitive to parasitic contact resistances. With the help of a 2D numerical model, the reduced contact resistances of OPBTs are explained by a homogeneous injection of current acros
... Show More