Polluted water has been considered a critical issue nowadays, threatening the environment and lives of living creatures. Because of technological and industrial advancements, as well as increased social activities of humans in various countries, pollution sources have multiplied. To reduce the impact of this problem, many techniques have been developed in order to reach zero discharge pollution. In the last decade, graphene oxide (GO) - a member of the graphene nanomaterials family, has been the focus of many research efforts in the water treatment sector because of its extraordinary properties. This review highlights the research efforts conducted to investigate GO as a novel adsorbent for water treatment applications and recent fulfilments in the last 3 years. The synthesis techniques, properties, and efficiency of this material in water treatment will be explained. All results confirm the future role of GO as an efficient absorbent to solve wastewater purification challenges, but the big challenge is to reduce time and simplify the complicated extent of synthesis stages, besides reducing the high cost of production methods. According to the review, Iraqi researchers' efforts to use this nanomaterial in water purification are still in their early stages.
The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show MoreIn recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that pr
... Show Morein this paper, the current work was devoted to the manufacture of TiO2 nanoparticles doped with manganese, synthesis by the sol-gel technique using a dip-conting device, for their hydrophilic properties and photocatalytic activity, and the products were characterized by X-ray diffraction, scanning electron microscopy, and Uv-Visible absorption, and the results XRD showed an phase Anatase , and the results of the SEM Explained the shape of the morphology of the samples after the doping process compared with pure TiO2, and the results of a shift in light absorption from ultraviolet rays to visible light were evident. The results showed that the thin films have a high wettability under visible rays
... Show MoreWith and without the use of magnetic fields, titanium dioxide (TiO2) nanoparticles were synthesized using the hydrothermal method at extremely high temperatures and pressures. Titanium tetra isopropoxide [Ti(C12H28O4)] was used for the preparation, which was performed at pH 7 and under temperatures of 160 and 190 ˚C. UV spectroscopy, XRD crystallography, FE-SEM microscopy were used for characterizations. From UV spectroscopy, the energy gap values were clearly affected by the increase in temperature and the presence of the magnetic field. At the temperatures of 160 and 190 oC for TiO2 without magnetic field, FE-SEM microscopy images have shown an average c
... Show MoreThe corrosion inhibition of low carbon steel in1N HCl solution in the presence of peach juice at temperature (30,40,50,and 60)°C at concentration ( 5, 10, 20, 30, 40and 50 cm3/L)were studied using weight loss and polarization techniques. Results show that the inhibition efficiency was increased with the increase of inhibitor concentration and increased with the increase of temperature up to 50ºC ,above 50ºC (i.e. at 60 ºC) the values of efficiency decreases. Activation parameters of the corrosion process such as activation energies, Ea, activation enthalpies, ΔH, and activation entropies, ΔS, were calculated. The adsorption of inhibitor follows Langmuir isotherm. Maximum inhibition efficiency obtained was a bout 91% at 50ºC in the
... Show MoreIn this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreElectrical resistivity methods are one of the powerful methods for the detection and evaluation of shallower geophysical properties. This method was carried out at Hit area, western Iraq, in two stages; the first stage involved the use of 1Dimensional Vertical Electrical Sounding (VES) technique in three stations using Schlumberger array with maximum current electrodes of 50m. The second stage included the employment of two dimension (2D) resistivity imaging technique using dipole-dipole array with a-spacing of 4m and n-factor of 6 in two stations. The 1D survey showed good results in delineating contaminated and clear zones that have high resistivity contrast. Near the main contaminated spring, the 2D resi
... Show MoreMalaysia will be an ageing population by 2030 as the number of those aged 60 years and above has increased drastically from 6.2 percent in 2000 and is expected to reach 13.6 percent by 2030. There are many challenges that will be faced due to the ageing population, one of which is the increasing cost of pensions in the future. In view of that, it is necessary to investigate the effect of actuarial assumptions on pension liabilities under the perspective of ageing. To estimate the pension liabilities, the Projected Unit Credit method is used in the study and commutation functions are employed in the process. Demographic risk and salary risk have been identified as major risks in analyzing pension liabilities in this study. The sensitivity
... Show MoreAccuracy in multiple objects segmentation using geometric deformable models sometimes is not achieved for reasons relating to a number of parameters. In this research, we will study the effect of changing the parameters values on the work of the geometric deformable model and define their efficient values, as well as finding out the relations that link these parameters with each other, by depending on different case studies including multiple objects different in spacing, colors, and illumination. For specific ranges of parameters values the segmentation results are found good, where the success of the work of geometric deformable models has been limited within certain limits to the values of these parameters.
In this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<