Polluted water has been considered a critical issue nowadays, threatening the environment and lives of living creatures. Because of technological and industrial advancements, as well as increased social activities of humans in various countries, pollution sources have multiplied. To reduce the impact of this problem, many techniques have been developed in order to reach zero discharge pollution. In the last decade, graphene oxide (GO) - a member of the graphene nanomaterials family, has been the focus of many research efforts in the water treatment sector because of its extraordinary properties. This review highlights the research efforts conducted to investigate GO as a novel adsorbent for water treatment applications and recent fulfilments in the last 3 years. The synthesis techniques, properties, and efficiency of this material in water treatment will be explained. All results confirm the future role of GO as an efficient absorbent to solve wastewater purification challenges, but the big challenge is to reduce time and simplify the complicated extent of synthesis stages, besides reducing the high cost of production methods. According to the review, Iraqi researchers' efforts to use this nanomaterial in water purification are still in their early stages.
The relationship between Al-Wand lake and groundwater was studied in Khanaqin cityby identifying water levels for Al-Wand lake and the shallow groundwater aquifer for 2019 and 2020. The hydrochemical analyses of Al-Wand river water, Al-Wand lake water and shallow groundwater, and identifying the grain size analysis and mineralogy of the surface sediments have been done. This relationship was adopted on climate data of the study area by knowing which seasons contained water surplus or water deficit, and porosity and permeability define of soil that affects groundwater movement, and identify the salinity that effect on water quality.
In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919 for a previous study. The comparison between the numerical and numerical simulation res
... Show MoreNano γ-Al2O3 support was prepared by co-precipitation method by using different calcination temperatures (550, 600, and 750) oC. Then nano NiMo/γ-Al2O3 catalyst was prepared by impregnation method were nickel carbonate (source of Ni) and ammonium paramolybdate (source of Mo) on the best prepared nano γ-Al2O3 support at calcination temperature 550 oC. Make the characterizations for prepared nano γ-Al2O3 support at different temperatures and for nano NiMo/γ-Al2O3 catalyst like X-ray diffraction, X-ray fluorescent, AFM, SEM, BET surface area, and pore volume.
The N
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreIn real conditions of structures, foundations like retaining walls, industrial machines and platforms in offshore areas are commonly subjected to eccentrically inclined loads. This type of loading significantly affects the overall stability of shallow foundations due to exposing the foundation into two components of loads (horizontal and vertical) and consequently reduces the bearing capacity.
Based on a numerical analysis performed using finite element software (Plaxis 3D Foundation), the behavior of model strip foundation rested on dry sand under the effect of eccentric inclined loads with different embedment ratios (D/B) ranging from (0-1) has been explored. The results display that, the bearing capacity of st
... Show MoreIn the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction). These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12%) of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at
... Show MoreSilver nanoparticles (Ag-NPs) have been prepared using the electro-chemical
method. The experimental setup of this technique consist of two electrodes of pure
silver (99.2 %), the applied voltage on the electrodes is 20 V and the current through
the colloidal was about 0.4 Amp. The silver nanoparticles crystallization has been
studied; the crystalline structure appears Face center Cubic. The optical properties of
silver nanoparticles are strongly affected by the Local Surface Plasmon Resonance
(LSPR). The wavelength of maximum absorption band for an Ag NPs have a range
(~350nm-550nm).
Magnesium-doped Zinc oxide (ZnO: Mg) nanorods (NRs) films and pure Zinc oxide deposited on the p-silicon substrates were prepared by hydrothermal method. The doping level of the Mg concentration (atoms ratio of Mg to Zn was chosen to be 0.75% and 1.5%. X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) were performed to characterize the prepared films. X-ray diffraction analysis showed a decrease in the lattice parameters of the Mg-doped ZnO NRs. Under 10V applied bias voltage, the responsivity of p-n junction UV photodiode based on pure ZnO and Mg: ZnO with doping ratio (0.75% and 1.5%) was 0.06 A/W and (0.15A/W and 0.27A/W) at UV illumination of wavelength 365 nm respectively, 0.071 A/W and (0.084A/W and 0.11A/W) fo
... Show MoreIn this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).
The study area is located within the Hit area, western Iraq. The measurements of Graphical Bristow’s method were carried out by using Pole-dipole array, to delineate the anomaly of apparent resistivity caused by a known cavity target. The survey was applied along two traverses: traverse in W-E direction and traverse in S-N direction above Um El-Githoaa cavity. Data interpretation of the traverse trending W-E, with a-spacing equal to(2m)identified the anomaly of the cavity at a depth of (2.6m), (1.6m) height, and( 9.5m) width, while the actual dimensions of depth, height, and width were (3.80m),( 2.2m), and (12.30m) respectively, with variations of depth equal to (1.2m), high (0.8m), and width( 2.8m). The data interpretation with a-spac
... Show More