Preferred Language
Articles
/
ijs-7989
Strongly Essential Submodules and Modules with the se-CIP

     Let  be a ring with identity. Recall that a submodule  of a left -module  is called strongly essential if for any nonzero subset  of , there is  such that , i.e., . This paper introduces a class of submodules called se-closed, where a submodule  of  is called se-closed if it has no proper strongly essential extensions inside . We show by an example that the intersection of two se-closed submodules may not be se-closed. We say that a module  is have the se-Closed Intersection Property, briefly se-CIP, if the intersection of every two se-closed submodules of  is again se-closed in . Several characterizations are introduced and studied for each of these concepts. We prove for submodules  and  of  that a module  has the se-CIP if and only if  is strongly essential in  implies  is strongly essential in . Also, we verify that, a module  has the se-CIP if and only if for each se-closed submodule  of  and for all submodule  of ,  is se-closed in . Finally, some connections and examples are included about (se-CIP)-modules

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Al- Mustansiriya J. Sci
Rationally Extending Modules and Strongly Quasi-Monoform Modules

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Annihilator Essential Submodules
Abstract<p>Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.</p>
Scopus (3)
Scopus Crossref
View Publication
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules

        Let R be a commutative ring with  identity . In this paper  we study  the concepts of  essentially quasi-invertible submodules and essentially  quasi-Dedekind modules  as  a generalization of  quasi-invertible submodules and quasi-Dedekind  modules  . Among the results that we obtain is the following : M  is an essentially  quasi-Dedekind  module if and only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each  , Kerf ≤e M   implies   f = 0 .

View Publication Preview PDF
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Some Properties of the Essential Fuzzy and Closed Fuzzy Submodules

In this paper, we introduce and study the essential and closed fuzzy submodules of a fuzzy module X as a generalization of the notions of essential and closed submodules. We prove many basic properties of both concepts.

Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Dec 08 2023
Journal Name
Iraqi Journal Of Science
Modules With Chain Conditions On δ -Small Submodules

Let R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.

View Publication Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Fully Semiprime Submodules and Fully Semiprime Modules

   Let R be a commutative ring with unity and let M be a unitary R-module. In this paper we study fully semiprime submodules and fully semiprime modules, where a proper fully invariant R-submodule W of M is called fully semiprime in M if whenever XXW for all fully invariant R-submodule X of M, implies XW.         M is called fully semiprime if (0) is a fully semiprime submodule of M. We give basic properties of these concepts. Also we study the relationships between fully semiprime submodules (modules) and other related submodules (modules) respectively.

View Publication Preview PDF
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
2-prime submodules of modules

      Let R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2-prime ideal, where proper submodule H of module F over a ring R is said to be 2-prime if , for r R and x F implies that  or . we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if [N ] is a 2-prime submodule of E, where r R. Also, we prove that if F is a non-zero multiplication module, then [K: F] [H: F] for every submodule k of F such that H K. Furthermore, we will study the basic properties of this kind of submodules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Almost and Strongly Almost Approximately Nearly Quasi Compactly Packed Modules

In this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.

Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Early Childhood Special Education (int-jecse)