Hyperglycemia is a complication of diabetes (high blood sugar). This condition causes biochemical alterations in the cells of the body, which may lead to structural and functional problems throughout the body, including the eye. Diabetes retinopathy (DR) is a type of retinal degeneration induced by long-term diabetes that may lead to blindness. propose our deep learning method for the early detection of retinopathy using an efficient net B1 model and using the APTOS 2019 dataset. we used the Gaussian filter as one of the most significant image-processing algorithms. It recognizes edges in the dataset and reduces superfluous noise. We will enlarge the retina picture to 224×224 (the Efficient Net B1 standard) and utilize data augmentation methods to enhance the dataset photographs, and balance the dataset (which was quite uneven), to avoid overfitting. By using Transfer learning we save training time by using a previously learned deep CNN and transfer learning weights. In this research, EfficientNetB1 is compared against Xception, InceptionV3, MobileNet, and ResNet50 as a deep transfer learning model. The proposed model's accuracy, precision, recall, and f1-score are all examined. The EfficientNetB1 model outperforms all others in terms of overall testing accuracy (86.1%), sensitivity (87.24%), precision (97.6%), and F1-Score (89.32 percent). This approach might help physicians diagnose Diabetic Retinopathy earlier.
Water balance as a technique is considered one of the means that is relied upon in solving significant hydrological problems. The soil and water assessment tool (SWAT) model was used in this study to assess the water balance in the Wadi Al-Mohammadi basin located at the eastern edge of the Western Desert. Digital elevation model, soil data, Land use - Land cover, and climate data represent the most important requirements for the SWAT model's input as a database. The Wadi Al-Mohammadi basin delineation results show the overall drainage area was 2286.8 km2 with seven sub-basins. The trend line of climate data indicates a clear increase in the total rainfall, relative humidity, temperature, and solar radiation from 1990-
... Show MoreThe research aims to identify the extent to which Iraqi private banks practice profit management motivated by reducing the taxable base by increasing the provision for loan losses by relying on the LLP it model, which consists of a main independent variable (net profit before tax) and independent sub-variables (bank size, total debts to total equity, loans granted to total obligations) under the name of the variables governing the banking business. (Colmgrove-Smirnov) was used to test the normal distribution of data for all banks during the period 2017-2020, and then find the correlation between the main independent variable sub and the dependent variable by means of the correlation coefficient person, and then using the multiple
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.
Experimental results shows LPG-
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreInfectious diseases pose a global challenge, necessitating an exploration of novel methodologies for diagnostics and treatments. Since the onset of the most recent pandemic, COVID-19, which was initially identified as a worldwide health crisis, numerous countries experienced profound disruptions in their healthcare systems. To combat the spread of the COVID-19 pandemic, governments across the globe have mobilized significant efforts and resources to develop treatments and vaccines. Researchers have put forth a multitude of approaches for COVID-19 detection, treatment protocols, and vaccine development, including groundbreaking mRNA technology, among others.
This matter represents not only a scientific endeavor but also an essenti
... Show MoreSocial media and news agencies are major sources for tracking news and events. With these sources' massive amounts of data, it is easy to spread false or misleading information. Given the great dangers of fake news to societies, previous studies have given great attention to detecting it and limiting its impact. As such, this work aims to use modern deep learning techniques to detect Arabic fake news. In the proposed system, the attention model is adapted with bidirectional long-short-term memory (Bi-LSTM) to identify the most informative words in the sentence. Then, a multi-layer perceptron (MLP) is applied to classify news articles as fake or real. The experiments are conducted on a newly launched Arabic dataset called the Ara
... Show MoreBackground: Diabetic retinopathy is an important complication of diabetes mellitus. It is supposed that elevated sialic acid in diabetes mellitus plays an important role in diabetic retinopathy. This study investigated serum total sialic acid levels related to glycemic control, blood pressure, retinopathy, and serum lipid level in diabetic retinopathy patients.
Patients & Methods: Type 2 diabetic patients aged (56.47±10.68) years were recruited for the study. Fasting venous blood samples were collected from 132 diabetic subjects of whom 79 without retinopathy and 53 were diabetic with retinopathy. All the blood samples were processed for serum total sialic acid (TSA), fasting serum glucose (FSG), HbA
A newly flow injection-turbidimetric method characterized by it is speed and sensitivity has been developed for the determination of Amiloride in pure and pharmaceutical preparations. It is based on the formation of yellowish white precipitate for the Amiloride-phosphomolybidic acid ion pair in aqueous medium. Turbidity was measured by Ayah 6Sx1-T-1D solar cell CFI analyser via the attenuation of incident light from the surfaces precipitated particles at 0-180. The Chemical and physical parameters were investigated. Linear dynamic range for the attenuation of incident light versus Amiloride concentration was of 0.005-10 mmol.L-1, with the correlation coefficient (r) of 0.9986 , while the percentage linearity (r2%) was 99.71%. The L.O.
... Show MoreA newly flow injection-turbidimetric method characterized by it is speed and sensitivity has been developed for the determination of Amiloride in pure and pharmaceutical preparations. It is based on the formation of yellowish white precipitate for the Amiloride-phosphomolybidic acid ion pair in aqueous medium. Turbidity was measured by Ayah 6Sx1-T-1D solar cell CFI analyser via the attenuation of incident light from the surfaces precipitated particles at 0-180. The Chemical and physical parameters were investigated. Linear dynamic range for the attenuation of incident light versus Amiloride concentration was of 0.005-10 mmol.L-1, with the correlation coefficient (r) of 0.9986 , while the percentage linearity (r2%) was 99.71%. The L.O.
... Show More