Preferred Language
Articles
/
ijs-7915
A New Efficient Hybrid Approach for Machine Learning-Based Firefly Optimization
...Show More Authors

     Optimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some standard objective functions are used to compare the hybrid (FAGSA) method with FA and the traditional GSA to find the optimal solution. Simulation results obtained by MATLAB R2015a indicate that the hybrid algorithm has the ability to cross the local optimum limits with a faster convergence than the luminous Fireflies algorithm and the ordinary gravity search algorithm. Therefore, this paper proposes a new numerical optimization method based on integrating the properties of the two methods (luminous fireflies and gravity research). In most cases, the proposed method usually gives better results than the original methods individually.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
An efficient multistage CBIR based on Squared Krawtchouk-Tchebichef polynomials
...Show More Authors
Abstract<p>Image databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p</p> ... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
IoT-Smart Agriculture: Comparative Study on Farming Applications and Disease Prediction of Apple Crop using Machine Learning
...Show More Authors

     Recently, the Internet of Things has emerged as an encouraging technology that is scaling up new heights towards the modernization of real word physical objects into smarter devices in several domains. Internet of Things (IoT) based solutions in agriculture drives farming into a smart way through the proliferation of smart devices to enhanced production with minimal human involvement. This paper presents a comprehensive study of the role of IoT in prominent applications of farming, wireless communication protocols, and the role of sensors in precision farming. In this research article, the existing frameworks in IoT-based agriculture systems with relevant technologies are presented. Furthermore, the comparative analysis of the a

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Effect Of Technology Based Learning As A Supplement To Traditional Technology On Student's Achievement
...Show More Authors

This paper describes a practical study on the impact of learning's partners, Bluetooth Broadcasting system, interactive board, Real – time response system, notepad, free internet access, computer based examination, and interaction classroom, etc, had on undergraduate student performance, achievement and involving with lectures. The goal of this study is to test the hypothesis that the use of such learning techniques, tools, and strategies to improve student learning especially among the poorest performing students. Also, it gives some kind of practical comparison between the traditional way and interactive way of learning in terms of lectures time, number of tests, types of tests, student's scores, and student's involving with lectures

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The classification of fetus gender based on fuzzy C-mean using a hybrid filter
...Show More Authors

This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT),(median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Laplace has recorded a better accuracy. Our experimental evaluation on re

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Innovations in t-way test creation based on a hybrid hill climbing-greedy algorithm
...Show More Authors

<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Mon Feb 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Hybrid Algorithm to Protect Computer Networks Based on Human Biometrics and Computer Attributes
...Show More Authors

Objective of this work is the mixing between human biometric characteristics and unique attributes of the computer in order to protect computer networks and resources environments through the development of authentication and authorization techniques. In human biometric side has been studying the best methods and algorithms used, and the conclusion is that the fingerprint is the best, but it has some flaws. Fingerprint algorithm has been improved so that their performance can be adapted to enhance the clarity of the edge of the gully structures of pictures fingerprint, taking into account the evaluation of the direction of the nearby edges and repeat. In the side of the computer features, computer and its components like human have uniqu

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Reinforcement Learning-Based Television White Space Database
...Show More Authors

Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
A New Separable Moments Based on Tchebichef-Krawtchouk Polynomials
...Show More Authors

View Publication
Scopus (18)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Learning Evolution: a Survey
...Show More Authors

     Learning is the process of gaining knowledge and implementing this knowledge on behavior. The concept of learning is not strict to just human being, it expanded to include machine also. Now the machines can behave based on the gained knowledge learned from the environment. The learning process is evolving in both human and machine, to keep up with the technology in the world, the human learning evolved into micro-learning and the machine learning evolved to deep learning. In this paper, the evolution of learning is discussed as a formal survey accomplished with the foundation of machine learning and its evolved version of learning which is deep learning and micro-learning as a new learning technology can be imple

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
A Multi-Objective Task Offloading Optimization for Vehicular Fog Computing
...Show More Authors

      Internet of Vehicle (IoV) is one of the most basic branches of the Internet of Things (IoT), which provides many advantages for drivers and passengers to ensure safety and traffic efficiency. Most IoV applications are delay-sensitive and require resources for data storage and computation that cannot be afforded by vehicles. Thus, such tasks are always offloaded to more powerful nodes, like cloud or fog. Vehicular Fog Computing (VFC), which extends cloud computing and brings resources closer to the edge of the network, has the potential to reduce both traffic congestion and load on the cloud. Resources management and allocation process is very critical for satisfying both user and provider needs. However, th

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref