Optimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some standard objective functions are used to compare the hybrid (FAGSA) method with FA and the traditional GSA to find the optimal solution. Simulation results obtained by MATLAB R2015a indicate that the hybrid algorithm has the ability to cross the local optimum limits with a faster convergence than the luminous Fireflies algorithm and the ordinary gravity search algorithm. Therefore, this paper proposes a new numerical optimization method based on integrating the properties of the two methods (luminous fireflies and gravity research). In most cases, the proposed method usually gives better results than the original methods individually.
It was confirmed in this research that the ligand calcichrome formed stable complex with calcium ion at pH of 8.5 which verified by UV/Vis and FTIR spectral analysis and the complexation occurred via hydroxyl groups .
The stoichiometric ratio of the formed complex was found to be 1:1 by mole ratio and continuous variation methods . Dry ashing method of the complex and flame emission photometric analysis offered a calcium percentage in calcium complex equal 4.5% with an error of 2.41% due to experimental errors .
Curing of concrete is the maintenance of a satisfactory moisture content and temperature for a
period of time immediately following placing so the desired properties are developed. Accelerated
curing is advantages where early strength gain in concrete is important. The expose of concrete
specimens to the accelerated curing conditions which permit the specimens to develop a significant
portion of their ultimate strength within a period of time (1-2 days), depends on the method of the
curing cycle.Three accelerated curing test methods are adopted in this study. These are warm water,
autogenous and proposed test methods. The results of this study has shown good correlation
between the accelerated strength especially for
Pseudomonas putidaPST-1 isolate isolated from soil of plant root was used for high production of indole acetic acid. Indole acetic acid (IAA) production is a major property of rhizosphere bacteria that stimulate and facilitate plant growth. Optimization of indole acetic acid production was carried out at different cultural conditions of pH temperature, incubation period, and the amount of inoculum of bacteria. The best chemical medium for high IAA production (82 Mg/ml) was Luria-Bertani broth medium consisted of 1.2gm tryptophan and 10gm peptone in their components, while the cheese whey medium was the best natural medium for IAA production was (66 Mg/ml). IAA production byPseudomonas putida PST-1 was optimized by studying some factors t
... Show MoreThis article investigates the relationship between foot angle and jump stability, focusing on minimizing injury risk. Here are the key points: Importance: Understanding foot angle is crucial for improving jump stability, athletic performance, and reducing jump-related injuries like ankle sprains. Ideal Foot Angle: Research suggests a forward foot angle of around 15 degrees might be ideal for many people during jumps. This angle distributes forces evenly across the foot, lowers the center of gravity, and provides more surface area for pushing off the ground. Factors Affecting Ideal Angle: The optimal angle can vary depending on the type of jump (vertical vs. long jump), fitness level, and personal preference. Incorrect Foot Angles: Landing w
... Show MoreIn this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
The emergence of new dangerous diseases worldwide has led to the need to think about the possibility of enhancing prevention by using new technologies. One of the most important requirements emphasized in the recent studies is the effectiveness of the masks against pathogenic bacteria. In this study, the efficiency of anti-infection protective face masks against bacteria was enhanced by using gold nanoparticles prepared by the chemical precipitation method. The absorption spectrum of the prepared gold suspension shows a clear plasmonic peak at 522 nm. The measurements showed that the sample was made of polypropylene fibers, where X-ray diffraction tests showed peaks matching its crystalline structure. Immersion with gold suspension led t
... Show MoreThis research aims to study the effect of different pH values on the growth of CdTe nanoparticles during specific times. The reflux method has been used as a method for preparing CdTe quantum dots. A difference in absorbance and intensities of peaks at pH 10.5 and 11.5 was observed during the reaction period. The growth rate of the NPs (nucleation) was irregular at low pH values. Optical examinations showed that the best growth rate of NPs was at pH value 12.
In this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve
... Show MoreSteady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respecti
... Show MoreFor the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe e