Minimizing the power consumption of electronic systems is one of the most critical concerns in the design of integrated circuits for very large-scale integration (VLSI). Despite the reality that VLSI design is known for its compact size, low power, low price, excellent dependability, and high functionality, the design stage remains difficult to improve in terms of time and power. Several optimization algorithms have been designed to tackle the present issues in VLSI design. This study discusses a bi-objective optimization technique for circuit partitioning based on a genetic algorithm. The motivation for the proposed research is derived from the basic concept that, if some portions of a circuit's system are deactivated during the processor's idle time, the circuit's power consumption is automatically reduced. To reduce the overall system's power consumption, maximization of sleep time and minimization of net cuts are required. To achieve these, an effective fitness function has been constructed in such a way that the balance criteria are also maintained. The approach has been tested on a set of net lists from the ISPD'98 benchmark suite, each containing 10 to 30 nodes. The experimental results are compared with two existing methods that clearly indicate the acceptability of the suggested method. The suggested strategy achieves an average reduction of 24.69% and 31.46% for net cut, whereas average extensions of 15.20% and 12.31% are observed in sleep time when compared with two existing methods. The proposed method also achieves an average power efficiency of 14.98% and 12.09% with respect to these two state-of-the-art methods.
Far infrared photoconductive detectors based on multi-wall carbon nanotubes (MWCNTs) were fabricated and their characteristics were tested. MWCNTs films deposited on porous silicon (PSi) nanosurface by dip and drop coating techniques. Two types of deposited methods were used; dip coating sand drop –by-drop methods. As well as two types of detector were fabricated one with aluminum mask and the other without, and their figures of merits were studied. The detectors were illuminated by 2.2 and 2.5 Watt from CO2 of 10.6 m and tested. The surface morphology for the films is studied using AFM and SEM micrographs. The films show homogeneous distributed for CNTs on the PSi layer. The root mean square (r.m.s.) of the films surface roughness in
... Show Morewas studied by taking several different values for the constant α and fixing the other three variables β, c and d with the values 25.58, -0.7142857, and -1.142, respectively. The purpose of this paper is to know the values by which the system transforms from a steady state to a chaotic state under the initial conditions x, y, and z that equal -1.6, 0 and 1.6 respectively. It was found that when the value of α is equal to 0, the Chua system is in a steady state, and when the value of α is equal to 9.5 and the wave is sinusoidal, the system is in oscillation, and when α is equal 13.4 the system is in a Quasi-chaotic state, and finally the system turns to the chaotic state when the value of α equals 15.0
... Show MoreRecently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse
... Show MoreThis work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of
... Show MoreFeatures is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.