This study was carried out at the Tissue Culture Laboratory, which belongs to the General Commission of Biotechnology, in order to evaluate the influence of NaCl-induced salinity stress on some oxidative parameters (MDA and H2O2) and antioxidant enzymes (CAT, APX, and SOD) in eight durum wheat genotypes (Doma1, Bouhoth11, Cham3, Bezater, Cham5, Aghamatales, Icaverve, and Icamber) in vitro, to determine the most salinity tolerant genotypes. Salinity stress was applied by adding different levels of NaCl to the growing medium (0, 50, 100, and 150 mM). The experiment was laid according to a complete randomized design (CRD) with sixteen replicates. Increasing salinity level caused an increase in both the Hydrogen peroxide (H2O2), malondialdehyde (MDA) and the activity of the investigated antioxidant enzymes (SOD، APX، CAT) compared with the control. The leaf content of both H2O2 and MDA was significantly higher in the genotype Icaverve at the salinity level of 150 mM NaCl (45.67 and 130.74 µmol g-1 fresh wt. respectively), while the activity of the enzymes SOD, APX and CAT were significantly higher in the two durum wheat genotypes, Bouhoth11 and Doma1 at the highest salinity level (150 mM NaCl). Antioxidant enzymes play a pivotal role in the defense mechanisms in the durum wheat under salinity stress conditions, and the in vitro screening tool can be effectively used to assess the genetic variability for salinity tolerance in the durum wheat crop.
This study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show MoreThis study was done to evaluate a new technique to determine the presence of methamphetamine in the hair using nano bentonite-based adsorbent as the filler of extraction column. The state of the art of this study was based on the presence of silica in the nano bentonite that was assumed can interact with methamphetamine. The hair used was treated using methanol to extract the presence of methamphetamine, then it was continued by sonicating the hair sample. Qualitative analysis using Marquish reagent was performed to confirm the presence of methamphetamine in the isolate.The hair sample that has been taken in a different period confirmed that this current developing method can be used to analyzed methamphetamine. This m
... Show MoreThe current issues in spam email detection systems are directly related to spam email classification's low accuracy and feature selection's high dimensionality. However, in machine learning (ML), feature selection (FS) as a global optimization strategy reduces data redundancy and produces a collection of precise and acceptable outcomes. A black hole algorithm-based FS algorithm is suggested in this paper for reducing the dimensionality of features and improving the accuracy of spam email classification. Each star's features are represented in binary form, with the features being transformed to binary using a sigmoid function. The proposed Binary Black Hole Algorithm (BBH) searches the feature space for the best feature subsets,
... Show More The δ-mixing of γ-transitions in 70As populated in the 32 70 70 33 ( , ) Ge p n As γ
reaction is
calculated in the present work by using the a2-ratio methods. In one work we applied this method for two cases, the first one is for pure transition and the sacend one is for non pure transition, We take into account the experimental a2-coefficient for previous works and δ -values for one transition only.The results obtained are, in general, in a good agreement within associated errors, with those reported previously , the discrepancies that occur are due to inaccuracies existing in the experimental data of the previous works.
This paper aims to study the chemical degradation of Brilliant Green in water via photo-Fenton (H2O2/Fe2+/UV) and Fenton (H2O2/Fe2+) reaction. Fe- B nano particles are applied as incrustation in the inner wall surface of reactor. The data form X- Ray diffraction (XRD) analysis that Fe- B nanocomposite catalyst consist mainly of SiO2 (quartz) and Fe2O3 (hematite) crystallites. B.G dye degradation is estimated to discover the catalytic action of Fe- B synthesized surface in the presence of UVC light and hydrogen peroxide. B.G dye solution with 10 ppm primary concentration is reduced by 99.9% under the later parameter 2ml H2O2, pH= 7, temperature =25°C within 10 min. It is clear that pH of the solution affects the photo- catalytic degradation
... Show More