The mineralogical investigation, geochemical analysis, and grain size calculation were carried out for floodplain sediment in the Tigris River to identify the properties of the sediment. The average values of the three main sediment classes, very fine sand, silt, and clay are 9.67, 62.53 and 27.80%, respectively. The silt size fraction was predominant. The classification and nomenclature of surface sediment types from the floodplain of the Tigris River are sandy-silt and mud, and they are the dominant sediment. Statistical parameters of grain size analysis refer to the average of the median values 3.74 Φ very fine sand; mean in average 6.16 Φ coarse silt; standard deviation evident by average 1.30 Φ poorly sorted, skewed; in average -0.14 negatively skewed, and the average of Kurtosis 2.80 very leptokurtic. The samples analysed by the XRD technique revealed clay minerals (chlorite, illite, montmorillonite, and kaolinite) and non-clay minerals (quartz, feldspar, calcite, and dolomite). The heavy minerals identified as species were zircon, tourmaline, rutile, garnet, olivine, hornblende, pyroxene, kyanite, and magnetic particles. The concentration of major oxides by geochemical analysis indicates a high content of SiO2 and CaO in the floodplain of the Tigris river.
This study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreWe aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure