Establishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the contribution of this paper is to reformulate the maximum overlapped set covers problem to handle the probabilistic sensing model. The problem is addressed as a multi-objective optimization (MOO) problem and the well-known decomposition based multi-objective evolutionary algorithm (MOEA/D) is adopted to solve the stated problem. A Multi-layer MOEA/D is suggested, wherein each layer yields a distinct set cover. Performance evaluations in terms of total number of set covers, total residual energy, and coverage reliability are reported through extensive simulations. The main aspect of the results reveals that the network's lifetime (i.e. total number of set covers) can be extended by increasing number of sensors. On the other hand, the coverage reliability can be increased by increasing sensing ranges but at the expense of decreasing the network's lifetime.
This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreIn this article an attempt has been made to procure the concept of pairwise neutrosophic simply open set, pairwise neutrosophic simply continuous mapping, pairwise neutrosophic simply open mapping, pairwise neutrosophic simply compactness, pairwise neutrosophic simply b-open set, pairwise neutrosophic simply b-continuous mapping, pairwise neutrosophic simply b-open mapping and pairwise neutrosophic simply b-compactness via neutrosophic bi-topological spaces (in short NBTS). Besides, we furnish few illustrative examples on them via NBTS. Further, we investigate some basic properties of them, and formulate several results on NBTSs.
Flexible pavement design and analysis were carried out in the past with semi-experimental methods, using elastic characteristics of pavement layers. Due to the complex interferences between various layers and their time consumption, the traditional pavement analysis, and design methods were replaced with fast and powerful methods including the Finite Element Method (FEM) and the Discrete Element Method (DEM). FEM requires less computational power and is more appropriate for continuous environments. In this study, flexible pavement consisting of 5 layers (surface, binder, base, subbase, and subgrade) had been analyzed using FEM. The ABAQUS (6.14-2) software had been utilized to investigate the influence of the base layer depth on ver
... Show MoreFeature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Moment invariants have wide applications in image recognition since they were proposed.
In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum
... Show MoreThe multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg
... Show More