Preferred Language
Articles
/
ijs-7622
Multi-layer Multi-objective Evolutionary Algorithm for Adjustable Range Set Covers Problem in Wireless Sensor Networks
...Show More Authors

Establishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the contribution of this paper is to reformulate the maximum overlapped set covers problem to handle the probabilistic sensing model. The problem is addressed as a multi-objective optimization (MOO) problem and the well-known decomposition based multi-objective evolutionary algorithm (MOEA/D) is adopted to solve the stated problem. A Multi-layer MOEA/D is suggested, wherein each layer yields a distinct set cover. Performance evaluations in terms of total number of set covers, total residual energy, and coverage reliability are reported through extensive simulations. The main aspect of the results reveals that the network's lifetime (i.e. total number of set covers) can be extended by increasing number of sensors. On the other hand, the coverage reliability can be increased by increasing sensing ranges but at the expense of decreasing the network's lifetime.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution
...Show More Authors

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
Developing a Predictive Model and Multi-Objective Optimization of a Photovoltaic/Thermal System Based on Energy and Exergy Analysis Using Response Surface Methodology
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
A Genetic Based Optimization Model for Extractive Multi-Document Text Summarization
...Show More Authors

Extractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datas

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Solvability of Some Types for Multi-fractional Integro-Partial Differential Equation
...Show More Authors

In this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions. 

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Elliptic Curve Cryptography Performance Evaluation for Securing Multi-Factor Systems in a Cloud Computing Environment
...Show More Authors

     In the contemporary world, the security of data and privacy policies are major concerns in cloud computing. Data stored on the cloud has been claimed to be unsafe and liable to be hacked. Users have found it difficult to trust their data in the cloud. Users want to know that their data is accessible from anywhere and that an unauthorized user will not be able to access it. Another area of concern is the authentication of users over the cloud. There are a number of security concerns with Cloud Computing which include Distributed Denial of Service, Data leakage, and many more, just to mention a few. In this paper, an Elliptic Curve Cryptography (ECC) algorithm is used for the encryption and decryption of the information stored on

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Finding Best Clustering For Big Networks with Minimum Objective Function by Using Probabilistic Tabu Search
...Show More Authors

     Fuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Nov 01 2024
Journal Name
Process Safety And Environmental Protection
Optimized ensemble deep random vector functional link with nature inspired algorithm and boruta feature selection: Multi-site intelligent model for air quality index forecasting
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
A Comparative Study of Single-Constraint Routing in Wireless Mesh Networks Using Different Dynamic Programming Algorithms
...Show More Authors

Finding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorith

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Enhancing Smart Cities with IoT and Cloud Computing: A Study on Integrating Wireless Ad Hoc Networks for Efficient Communication
...Show More Authors

Smart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref