Preferred Language
Articles
/
ijs-1024
Finding Best Clustering For Big Networks with Minimum Objective Function by Using Probabilistic Tabu Search
...Show More Authors

     Fuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Finding the best estimation of generalized for failure rates by using Simulation
...Show More Authors

The statistical distributions study aimed to obtain on best descriptions  of variable sets phenomena, which each of them got one behavior of that distributions .  The estimation operations study for that distributions considered of important things which could n't canceled in variable behavior study, as result  this research came as trial for reaching to best method for information distribution estimation which is generalized linear failure rate distribution, throughout studying the theoretical sides by depending on statistical posteriori methods  like greatest ability, minimum squares method and Mixing method (suggested method).        

The research

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Capacitated Vehicle Routing Problem (CVRP) Using Tabu Search Algorithm (TSA)
...Show More Authors

This paper investigates the capacitated vehicle routing problem (CVRP) as it is one of the numerous issues that have no impeccable solutions yet. Numerous scientists in the recent couple of decades have set up various explores and utilized numerous strategies with various methods to deal with it. However, for all researches, finding the least cost is exceptionally complicated. In any case, they have figured out how to think of rough solutions that vary in efficiencies relying upon the search space. Furthermore, tabu search (TS) is utilized to resolve this issue as it is fit for solving numerous complicated issues. The algorithm has been adjusted to resolve the exploration issue, where its methodology is not quite the same as the normal a

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering
...Show More Authors

Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Direction Finding Using GHA Neural Networks
...Show More Authors

 This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).

 

 

View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Swarm And Evolutionary Computation
Improving the performance of evolutionary multi-objective co-clustering models for community detection in complex social networks
...Show More Authors

Scopus (31)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
IMPLEMENTATION OF ROOT FINDING ALGORITHM OF MINIMUM PHASE FILTER USING VHDL
...Show More Authors

Root-finding is an oldest classical problem, which is still an important research topic, due to its impact on computational algebra and geometry. In communications systems, when the impulse response of the channel is minimum phase the state of equalization algorithm is reduced and the spectral efficiency will improved. To make the channel impulse response minimum phase the prefilter which is called minimum phase filter is used, the adaptation of the minimum phase filter need root finding algorithm. In this paper, the VHDL implementation of the root finding algorithm introduced by Clark and Hau is introduced.
VHDL program is used in the work, to find the roots of two channels and make them minimum phase, the obtained output results are

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Using the artificial TABU algorithm to estimate the semi-parametric regression function with measurement errors
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.

Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Pointwise Estimates for Finding the Error of Best Approximation by Spline, Positive Algebraic Polynomials and Copositive
...Show More Authors

     The first step in this research is to find some of the necessary estimations in approximation by using certain algebraic polynomials, as well as we use certain specific points in approximation. There are many estimations that help to find the best approximation using algebraic polynomials and geometric polynomials. Throughout this research, we deal with some of these estimations to estimate the best approximation error using algebraic polynomials where the basic estimations in approximation are discussed and proven using algebraic polynomials that are discussed and proven using algebraic polynomials that are specified by the following points and  if   as well as if   .

  For the second step of the work, the estimatio

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Intelligent Bat Algorithm for Finding Eps Parameter of DbScan Clustering Algorithm
...Show More Authors

    Clustering is an unsupervised learning method that classified data according to similarity probabilities. DBScan as a high-quality algorithm has been introduced for clustering spatial data due to its ability to remove noise (outlier) and constructing arbitrarily shapes. However, it has a problem in determining a suitable value of Eps parameter. This paper proposes a new clustering method, termed as DBScanBAT, that it optimizes DBScan algorithm by BAT algorithm. The proposed method automatically sets the DBScan parameters (Eps) and finds the optimal value for it. The results of the proposed DBScanBAT automatically generates near original number of clusters better than DBScanPSO and original DBScan. Furthermore, the proposed method

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref