Establishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the contribution of this paper is to reformulate the maximum overlapped set covers problem to handle the probabilistic sensing model. The problem is addressed as a multi-objective optimization (MOO) problem and the well-known decomposition based multi-objective evolutionary algorithm (MOEA/D) is adopted to solve the stated problem. A Multi-layer MOEA/D is suggested, wherein each layer yields a distinct set cover. Performance evaluations in terms of total number of set covers, total residual energy, and coverage reliability are reported through extensive simulations. The main aspect of the results reveals that the network's lifetime (i.e. total number of set covers) can be extended by increasing number of sensors. On the other hand, the coverage reliability can be increased by increasing sensing ranges but at the expense of decreasing the network's lifetime.
Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra
For several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm. The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.
Most of the Internet of Things (IoT), cell phones, and Radio Frequency Identification (RFID) applications need high speed in the execution and processing of data. this is done by reducing, system energy consumption, latency, throughput, and processing time. Thus, it will affect against security of such devices and may be attacked by malicious programs. Lightweight cryptographic algorithms are one of the most ideal methods Securing these IoT applications. Cryptography obfuscates and removes the ability to capture all key information patterns ensures that all data transfers occur Safe, accurate, verified, legal and undeniable. Fortunately, various lightweight encryption algorithms could be used to increase defense against various at
... Show MoreAnalysis and determination of some of the elastic moduli and other geotechnical parameters in the campus of the University of Baghdad performed by using New Sonic Viewer in the field to measure (Vp) and (Vs) velocities as well as the density of the upper soil inside the campus. Seventeen profiles were selected each of (10) m. length distributed randomly inside the university campus to evaluate the top soil properties in addition to the soil profile.
The ultrasonic waves showed two layers of the soil with different velocities of
(Vp) and (Vs). The velocities of p-wave of the first layer ranged from (288-642) m/sec. On other hand the velocities of shear wave (Vs) in the same layer ranged from (88-193) m/sec. In the second layer the v
This paper is concerned with studying the numerical solution for the discrete classical optimal control problem (NSDCOCP) governed by a variable coefficients nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is solved by using the Galerkin finite element method (GFEM) for the space variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the NS for the discrete weak form (DWF) and for the discrete adjoint weak form (DSAWF) While, the gradient projection method (GRPM), also called the gradient method (GRM), or the Frank Wolfe method (FRM) are used to minimize the discrete cost function (DCF) to find the DSCOC. Within these three methods, the Armijo step option (ARMSO) or the optimal step opt
... Show MoreIn this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented