We presented in this paper a new class containing analytic univalent functions defined on unit disk. We obtained many geometric properties , like , coefficient inequality , distortion and growth theorems, convolution property, convex set, arithmetic mean and radius of starlikness and convexity by using Gaussian hypergeometric function for the class
This paper aims at introducing a new generalized differential operator and new subclass of analytic functions to obtain some interesting properties like coefficient estimates and fractional derivatives.
The nuclear size radii, density distributions and elastic electron scattering charge form factors for Fluorine isotopes (17,19,20,24,26F) were studied using the radial wave functions (WF) of harmonic-oscillator (HO) potential and free mean field described by spherical Hankel functions (SHF) for the core and the valence parts, respectively for all aforementioned isotopes. The parameters for HO potential (size parameter ) and SHF were chosen to regenerate the available experimental size radii. It was found that using spherical Hankel functions in our work improved the calculated results quantities in comparison with empirical data.
In this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.
This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themsel
... Show MoreIn this paper, we analyze several aspects of a hyperbolic univalent function related to convexity properties, by assuming to be the univalent holomorphic function maps of the unit disk onto the hyperbolic convex region ( is an open connected subset of). This assumption leads to the coverage of some of the findings that are started by seeking a convex univalent function distortion property to provide an approximation of the inequality and confirm the form of the lower bound for . A further result was reached by combining the distortion and growth properties for increasing inequality . From the last result, we wanted to demonstrate the effect of the unit disk image on the condition of convexity estimation
... Show MoreThe applications of Ruscheweyh derivative are studied and discussed of class of meromorphic multivalent application. We get some interesting geometric properties, such as coefficient bound, Convex linear combination, growth and distortion bounds, radii of starlikenss , convexity and neighborhood property.
The main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.